Graph covers and generalized snarks
EUROCOMB’23
681–687
James Abello, Michael R. Fellows, and John C. Stillwell. On the complexity and combinatorics of covering finite complexes. Australian Journal of Combinatorics, 4:103-112, 1991.
Norman Biggs. Algebraic graph theory. Cambridge University Press, 1974.
https://doi.org/10.1017/CBO9780511608704
Hans L. Bodlaender. The classification of coverings of processor networks. Journal of Parallel Distributed Computing, 6:166-182, 1989.
https://doi.org/10.1016/0743-7315(89)90048-8
Jan Bok, Jiří Fiala, Petr Hliněný, Nikola Jedličková, and Jan Kratochvíl. Computational complexity of covering multigraphs with semi-edges: Small cases. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Michaela Seifrtová. Computational complexity of covering disconnected multigraphs. In Evripidis Bampis and Aris Pagourtzis, editors, Fundamentals of Computation Theory, volume 12867 of Lecture Notes in Computer Science, pages 85-99. Springer, 2021.
https://doi.org/10.1007/978-3-030-86593-1_6
Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl, and Pawel Rzazewski. List covering of regular multigraphs. In Cristina Bazgan and Henning Fernau, editors, Combinatorial Algorithms - 33rd International Workshop, IWOCA 2022, Trier, Germany, June 7-9, 2022, Proceedings, volume 13270 of Lecture Notes in Computer Science, pages 228-242. Springer, 2022.
https://doi.org/10.1007/978-3-031-06678-8_17
Miquel Angel Fiol, Giuseppe Mazzuoccolo, and Eckhard Steffen. Measures of edgeuncolorability of cubic graphs. Electronic journal of combinatorics, 25(4):# P4.54, 2018.
https://doi.org/10.37236/6848
Jonathan L. Gross. Voltage graphs. Discrete mathematics, 9(3):239-246, 1974.
https://doi.org/10.1016/0012-365X(74)90006-5
Jonathan L. Gross and Seth R. Alpert. The topological theory of current graphs. Journal of Combinatorial Theory, Series B, 17(3):218-233, 1974.
https://doi.org/10.1016/0095-8956(74)90028-8
Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Courier Corporation, 2001.
Robert Jajcay and Jozef Širáň. Small vertex-transitive graphs of given degree and girth. Ars Mathematica Contemporanea, 4(2):375-384, 2011.
https://doi.org/10.26493/1855-3974.124.06d
Jan Kratochvíl. Towards strong dichotomy of graph covers. In GROW 2022 - Book of Open Problems, page 10, 2022.
Aleksander Malnič, Roman Nedela, and Martin Škoviera. Lifting graph automorphisms by voltage assignments. European Journal of Combinatorics, 21(7):927-947, 2000.
https://doi.org/10.1006/eujc.2000.0390
Jan Mazák, J. Rajník, and Martin Škoviera. Morphology of small snarks. Electronic J. Combin., 29(4), 2022.
https://doi.org/10.37236/10917
Mirka Miller and Jozef Širáň. Moore graphs and beyond: A survey of the degree/diameter problem. The electronic journal of combinatorics, 20(2):# DS14v2, 2013.
https://doi.org/10.37236/35
Roman Nedela and Martin Škoviera. Cayley snarks and almost simple groups. Combinatorica, 21:583-590, 2001.
https://doi.org/10.1007/s004930100014
Gerhard Ringel. Map color theorem, volume 209. Springer Science & Business Media, 2012.
Gerhard Ringel and John W. T. Youngs. Solution of the Heawood map-coloring problem. Proceedings of the National Academy of Sciences, 60(2):438-445, 1968.
https://doi.org/10.1073/pnas.60.2.438
John J. Watkins. Snarks. Annals of the New York Academy of Sciences, 576(1):606-622, 1989.
https://doi.org/10.1111/j.1749-6632.1989.tb16441.x
Arthur T. White. Graphs, groups and surfaces. Elsevier, 1985.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Jan Kratochvil, Roman Nedela