#
Finding pairwise disjoint vector pairs in F_{2}^{n} with a prescribed sequence of differences

## EUROCOMB’23

669–674

Question posed by R. Bacher on MathLinks in 2008, currently available here: https://artofproblemsolving.com/community/c6h183554

Balister, P. N., Győri, E., & Schelp, R. H. (2011). Coloring vertices and edges of a graph by nonempty subsets of a set. European Journal of Combinatorics, 32(4), 533-537.

https://doi.org/10.1016/j.ejc.2010.11.008

Correia, D. M., Pokrovskiy, A., & Sudakov, B. (2021). Short proofs of rainbow matching results. arXiv preprint arXiv:2108.07734.

Gao, P., Ramadurai, R., Wanless, I. M., & Wormald, N. (2021). Full rainbow matchings in graphs and hypergraphs. Combinatorics, Probability and Computing, 1-19.

https://doi.org/10.1017/S0963548320000620

Karasev, R. N., & Petrov, F. V. (2012). Partitions of nonzero elements of a finite field into pairs. Israel Journal of Mathematics, 192(1), 143-156.

https://doi.org/10.1007/s11856-012-0020-5

Kohen, D., & Sadofschi, I. (2010). A New Approach on the Seating Couples Problem. arXiv:1006.2571

Kohen, D., & Sadofschi, I. (2016). On a generalization of the seating couples problem. Discrete Mathematics, 339(12), 3017-3019.

https://doi.org/10.1016/j.disc.2016.06.018

Mička, O. (2017). Hypercube problems. http://ktiml.mff.cuni.cz/ gregor/hypercube/lecture17.pdf

Preissmann, E., & Mischler, M. (2009). Seating Couples Around the King's Table and a New Characterization of Prime Numbers. The American Mathematical Monthly, 116(3), 268-272.

https://doi.org/10.1080/00029890.2009.11920936

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright © 2023 Benedek Kovács