(Random) Trees of Intermediate Volume Growth
EUROCOMB’23
659–668
Miklos Abert, Mikolaj Fraczyk and Ben Hayes. Co-spectral radius, equivalence relations and the growth of unimodular random rooted trees. arXiv:2205.06692, 2022.
Jan Ambj, Jan Ambjorn, Bergfinnur Durhuus, Thordur Jonsson, Orur Jonsson, et al.
Quantum geometry: a statistical field theory approach. Cambridge University Press, 1997.
Gideon Amir and Shangjie Yang. The branching number of intermediate growth trees. arXiv:2205.14238, 2022.
Omer Angel. Growth and percolation on the uniform infinite planar triangulation.
Geometric And Functional Analysis, 13(5):935--974, 2003.
https://doi.org/10.1007/s00039-003-0436-5
Laszlo Babai. The growth rate of vertex-transitive planar graphs. SODA '97: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, pages 564--573, 1997.
Itai Benjamini and Oded Schramm. Recurrence of distributional limits of finite planar graphs. Selected Works of Oded Schramm, pages 533--545. Springer, 2011.
https://doi.org/10.1007/978-1-4419-9675-6_15
Rostislav Ivanovich Grigorchuck. Degrees of growth of finitely generated groups and the theory of invariant means. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 48(5):939--985, 1984.
Clara Loh. Geometric group theory. Springer, 2017.
https://doi.org/10.1007/978-3-319-72254-2
R. Lyons and D. Aldous. Processes on unimodular random networks. Electronic Journal of Probability, 12(54):1454--1508, 2007.
https://doi.org/10.1214/EJP.v12-463
Adam Timar. A stationary random graph of no growth rate. Annales de l'IHP Probabilites et statistiques, volume 50, pages 1161--1164, 2014.
https://doi.org/10.1214/13-AIHP563
Vladimir Ivanovich Trofimov. Graphs with polynomial growth.
Mathematics of the USSR-Sbornik, 51(2):405, 1985.
https://doi.org/10.1070/SM1985v051n02ABEH002866

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 George Kontogeorgiou, Martin Winter