Twin-width of Planar Graphs; a Short Proof
EUROCOMB’23
595–600
Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann. Graph product structure for h-framed graphs. CoRR, abs/2204.11495v1, 2022. arXiv:2204.11495v1.
Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1-3:46, 2022.
https://doi.org/10.1145/3486655
Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858, 2022. arXiv:2202.11858.
Petr Hliněný. Twin-width of planar graphs is at most 9, and at most 6 when bipartite planar. CoRR, abs/2205.05378, 2022. arXiv:2205.05378.
Petr Hliněný and Jan Jedelský. Twin-width of planar graphs is at most 8, and at most 6 when bipartite planar. CoRR, abs/2210.08620, 2022. Accepted to ICALP 2023. arXiv:2210.08620.
Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. In WG, volume 13453 of Lecture Notes in Computer Science, pages 287-299. Springer, 2022.
https://doi.org/10.1007/978-3-031-15914-5_21
Daniel Král and Ander Lamaison. Planar graph with twin-width seven. abs/2209.11537, 2022. arXiv:2209.11537.
https://doi.org/10.1016/j.ejc.2023.103749
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Petr Hlineny