Extremal number of graphs from geometric shapes
EUROCOMB’23
463–470
Noga Alon, Michael Krivelevich, and Benny Sudakov. Turán numbers of bipartite graphs and related Ramsey-type questions. Combinatorics, Probability and Computing, 12(5-6):477-494, 2003.
https://doi.org/10.1017/S0963548303005741
Noga Alon, Lajos Rónyai, and Tibor Szabó. Norm-graphs: variations and applications. J. Combin. Theory Ser. B, 76(2):280-290, 1999.
https://doi.org/10.1006/jctb.1999.1906
J. A. Bondy and M. Simonovits. Cycles of even length in graphs. J. Combin. Theory Ser. B, 16:97-105, 1974.
https://doi.org/10.1016/0095-8956(74)90052-5
Domagoj Bradač, Oliver Janzer, Benny Sudakov, and István Tomon. The Turán number
of the grid. Bull. Lond. Math. Soc., 55:194-204, 2023. 7
https://doi.org/10.1112/blms.12721
W. G. Brown. On graphs that do not contain a Thomsen graph. Canadian Mathematical Bulletin, 9(3):281-285, 1966.
https://doi.org/10.4153/CMB-1966-036-2
Boris Bukh. Extremal graphs without exponentially-small bicliques. arXiv preprint, arXiv: 2109.04167, 2021.
P. Erdős. Problems and results in graph theory. In The theory and applications of graphs (Kalamazoo, Mich., 1980), pages 331-341. Wiley, New York, 1981.
P. Erdős, A. Rényi, and V. T. Sós. On a problem of graph theory. Studia Sci. Math. Hungar., 1:215-235, 1966.
P. Erdős and M. Simonovits. A limit theorem in graph theory. Studia Sci. Math. Hungar., 1:51-57, 1966.
P. Erdős and M. Simonovits. Some extremal problems in graph theory. In Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969), pages 377-390. North-
Holland, Amsterdam, 1970.
P. Erdős and M. Simonovits. An extremal graph problem. Acta Math. Acad. Sci. Hungar., 22:275-282, 1971/72.
https://doi.org/10.1007/BF01896420
P. Erdős and A. H. Stone. On the structure of linear graphs. Bull. Amer. Math. Soc., 52:1087-1091, 1946.
https://doi.org/10.1090/S0002-9904-1946-08715-7
Zoltán Füredi and Miklós Simonovits. The history of degenerate (bipartite) extremal graph problems. In Erdős centennial, volume 25 of Bolyai Soc. Math. Stud., pages 169-264. János Bolyai Math. Soc., Budapest, 2013.
https://doi.org/10.1007/978-3-642-39286-3_7
Xiaocong He, Yongtao Li, and Lihua Feng. Extremal graphs for the odd prism. arXiv preprint, arXiv: 2302.03278, 2023.
Zhiyang He. A new upper bound on the Turán number of even cycles. Electron. J. Combin., 28(2):Paper No. 2.41, 18, 2021.
https://doi.org/10.37236/9861
Oliver Janzer. Disproof of a conjecture of Erdős and Simonovits on the Turán number of graphs with minimum degree 3. Int. Math. Res. Not. IMRN, 2022, to appear.
https://doi.org/10.1093/imrn/rnac076
János Kollár, Lajos Rónyai, and Tibor Szabó. Norm-graphs and bipartite Turán numbers. Combinatorica, 16(3):399-406, 1996.
https://doi.org/10.1007/BF01261323
Rom Pinchasi and Micha Sharir. On graphs that do not contain the cube and related problems. Combinatorica, 25(5):615-623, 2005.
https://doi.org/10.1007/s00493-005-0037-z
M. Simonovits. Extermal graph problems with symmetrical extremal graphs. Additional chromatic conditions. Discrete Math., 7:349-376, 1974.
https://doi.org/10.1016/0012-365X(74)90044-2
Miklós Simonovits. The extremal graph problem of the icosahedron. J. Combinatorial Theory Ser. B, 17:69-79, 1974.
https://doi.org/10.1016/0095-8956(74)90051-3
P. Turán. Eine extremalaufgabe aus der graphentheorie. Fiz Lapok, pages 436-452, 1941.
R. Wenger. Extremal graphs with no C4's, C6's, or C10's. J. Combin. Theory Ser. B, 52(1):113-116, 1991.
https://doi.org/10.1016/0095-8956(91)90097-4
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Jun Gao, Oliver Janzer, Hong Liu, Zixiang Xu