The structure of quasi-transitive graphs avoiding a minor with applications to the domino problem
EUROCOMB’23
425–432
Yago Antolín. On Cayley graphs of virtually free groups. Groups Complexity Cryptology, 3(2):301-327, 2011.
https://doi.org/10.1515/gcc.2011.012
Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel. About the Domino Problem for Subshifts on Groups. In V. Berthé and M. Rigo, editors, Sequences, Groups, and Number Theory, Trends in Mathematics, pages 331-389. Birkhäuser, Cham, 2018.
https://doi.org/10.1007/978-3-319-69152-7_9
Nathalie Aubrun, Sebastián Barbieri, and Etienne Moutot. The domino problem is undecidable on surface groups. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 46:1-46:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
László Babai. Some applications of graph contractions. Journal of Graph Theory, 1(2):125-130, 1977.
https://doi.org/10.1002/jgt.3190010207
Alexis Ballier and Maya Stein. The domino problem on groups of polynomial growth. Groups, Geometry, and Dynamics, 12(1):93-105, 2018.
https://doi.org/10.4171/GGD/439
Robert L. Berger. The undecidability of the domino problem. Memoirs of the American Mathematical Society, 1966.
https://doi.org/10.1090/memo/0066
Johannes Carmesin, Matthias Hamann, and Babak Miraftab. Canonical trees of treedecompositions. Journal of Combinatorial Theory, Series B, 152:1-26, 2022.
https://doi.org/10.1016/j.jctb.2021.08.004
Reinhard Diestel and Robin Thomas. Excluding a countable clique. Journal of Combinatorial Theory, Series B, 76(1):41-67, 1999.
https://doi.org/10.1006/jctb.1998.1886
Carl Droms. Infinite-ended groups with planar Cayley graphs. Journal of Group Theory, 9(4):487-496, 2006.
https://doi.org/10.1515/JGT.2006.032
Carl Droms, Brigitte Servatius, and Herman Servatius. The structure of locally finite two-connected graphs. Electronic Journal of Combinatorics, 2, 01 1998.
https://doi.org/10.37236/1211
Martin J. Dunwoody. The accessibility of finitely presented groups. Inventiones Mathematicae, 81:449-458, 1985.
https://doi.org/10.1007/BF01388581
Martin J. Dunwoody. Planar graphs and covers. arXiv preprint arXiv:0708.0920, 2007.
Martin Grohe. Quasi-4-connected components. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 8:1-8:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
Matthias Hamann. Planar transitive graphs. Electronic Journal of Combinatorics, 25:4.8, 2015.
https://doi.org/10.37236/7888
Matthias Hamann. Accessibility in transitive graphs. Combinatorica, 38(4):847-859, 2018.
https://doi.org/10.1007/s00493-017-3361-1
Neil Robertson and Paul Seymour. Graph minors. XVI. Excluding a non-planar graph. Journal of Combinatorial Theory, Series B, 89(1):43-76, 2003.
https://doi.org/10.1016/S0095-8956(03)00042-X
John Stallings. Group theory and three-dimensional manifolds. Yale University Press, 1972.
Carsten Thomassen. The Hadwiger number of infinite vertex-transitive graphs. Combinatorica, 12:481-491, 1992.
https://doi.org/10.1007/BF01305240
Carsten Thomassen and Wolfgang Woess. Vertex-transitive graphs and accessibility. Journal of Combinatorial Theory, Series B, 58(2):248-268, 1993.
https://doi.org/10.1006/jctb.1993.1042
W.T. Tutte. Graph Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Louis Esperet, Ugo Giocanti, Clément Legrand-Duchesne