Dispersion on the Complete Graph
EUROCOMB’23
336–342
C. Cooper, A. McDowell, T. Radzik, N. Rivera, and T. Shiraga. Dispersion processes. Random Structures Algorithms, 53(4):561-585, 2018.
https://doi.org/10.1002/rsa.20822
P. Diaconis and W. Fulton. A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino, 49(1):95-119, 1991.
A. Frieze and W. Pegden. A note on dispersing particles on a line. Random Structures Algorithms, 53(4):586-591, 2018.
https://doi.org/10.1002/rsa.20821
G. F. Lawler, M. Bramson, and D. Gri#eath. Internal di#usion limited aggregation. Ann. Probab., 20(4):2117-2140, 1992.
https://doi.org/10.1214/aop/1176989542
J. Lengler. Drift analysis. In B. Doerr and F. Neumann, editors, Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, Nat. Comput. Ser., pages 89-131. Springer, 2020.
https://doi.org/10.1007/978-3-030-29414-4_2
J. Lengler and A. Steger. Drift analysis and evolutionary algorithms revisited. Combin. Probab. Comput., 27(4):643-666, 2018.
https://doi.org/10.1017/S0963548318000275
R. Lyons and Y. Peres. Probability on trees and networks, volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, 2016.
https://doi.org/10.1017/9781316672815
Y. Shang. Longest distance of a non-uniform dispersion process on the in#nite line. Inform. Process. Lett., 164:106008, 5, 2020.
https://doi.org/10.1016/j.ipl.2020.106008
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Umberto De Ambroggio, Tamas Makai, Konstantinos Panagiotou