Countable ultrahomogeneous 2-colored graphs consisting of disjoint unions of cliques
EUROCOMB’23
223–230
P. J. Cameron. Homogeneous permutations. Electron. J. Combin., 9(2), 2002.
https://doi.org/10.37236/1674
G. Cherlin. The classification of countable homogeneous directed graphs and countable n-tournaments, volume 621 of Mem. Amer. Math. Soc. Amer. Math. Soc., Providence, 1998.
https://doi.org/10.1090/memo/0621
A. Gardiner. Homogeneous graphs. J. Comb. Theory, Ser. B, 20(1):94-102, 1976.
https://doi.org/10.1016/0095-8956(76)90072-1
Y. Golfand and M. Klin. On k-regular graphs. Algorithmic Research in Combinatorics, 186:76-85, 1978.
I. Heinrich, T. Schneider, and P. Schweitzer. Classification of finite highly regular vertex-coloured graphs. https://arxiv.org/abs/2012.01058.
W. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
T. Jenkinson. The construction and classification of homogeneous structures in model theory. Dissertation, University of Leeds, 2006.
T. Jenkinson, J. K. Truss, and D. Seidel. Countable homogeneous multipartite graphs. Europ. J. Combin., 33(1):82-109, 2012.
https://doi.org/10.1016/j.ejc.2011.04.004
A. H. Lachlan. Countable homogeneous tournaments. Trans. Amer. Math. Soc., 284:431-461, 1984.
https://doi.org/10.1090/S0002-9947-1984-0743728-1
A. H. Lachlan and R. E. Woodrow. Countable ultrahomogeneous undirected graphs. Trans. Amer. Math. Soc., 262:51-94.
https://doi.org/10.1090/S0002-9947-1980-0583847-2
D. C. Lockett and J. K. Truss. Homogeneous coloured multipartite graphs. Europ. J. Comb., 42:217-242, 2014.
https://doi.org/10.1016/j.ejc.2014.06.006
D. Macpherson. A survey of homogeneous structures. Discrete Mathematics, 311(15):1599-1634, 2011.
https://doi.org/10.1016/j.disc.2011.01.024
S. E. Rose. Classification of countable homogeneous 2-graphs. Dissertation, University of Leeds, 2011.
J. H. Schmerl. Countable homogeneous partially ordered sets. Algebra Universalis, 9:317-321, 1979.
https://doi.org/10.1007/BF02488043
J. Sheehan. Smoothly embeddable subgraphs. J. London Math. Soc., s2-9(2):212-218, 1974.
https://doi.org/10.1112/jlms/s2-9.2.212
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Sofia Brenner, Irene Heinrich