Tight path, what is it (Ramsey-)good for? Absolutely (almost) nothing!
EUROCOMB’23
186–192
P. Allen, G. Brightwell, and J. Skokan. Ramsey-goodness - and otherwise. Combinatorica, 33:125-160, 2013.
https://doi.org/10.1007/s00493-013-2778-4
J. Balogh, F. C. Clemen, J. Skokan, and A. Z. Wagner. The Ramsey number of the Fano plane versus the tight path. Electron. J. Combin., 27(1):P1.60, 2020.
https://doi.org/10.37236/8374
S. Brandt. Expanding graphs and Ramsey numbers. Freie Univ., Fachbereich Mathematik und Informatik, 1996.
S. A. Burr. Ramsey numbers involving graphs with long suspended paths. J. London Math. Soc., 2(3):405-413, 1981.
https://doi.org/10.1112/jlms/s2-24.3.405
S. A. Burr and P. Erdős. Generalizations of a Ramsey-theoretic result of Chvátal. J. Graph Theory, 7(1):39-51, 1983.
https://doi.org/10.1002/jgt.3190070106
M. Campos, S. Griffiths, R. Morris, and J. Sahasrabudhe. An exponential improvement for diagonal Ramsey. arXiv:2303.09521, 2023.
V. Chvátal. Tree-complete graph Ramsey numbers. J. Graph Theory, 1(1):93, 1977.
https://doi.org/10.1002/jgt.3190010118
V. Chvátal and F. Harary. Generalized Ramsey theory for graphs. III. Small off-diagonal numbers. Pacific J. Math., 41(2): 335-345, 1972.
https://doi.org/10.2140/pjm.1972.41.335
D. Conlon, J. Fox, and B. Sudakov. Recent developments in graph Ramsey theory. In Surveys in combinatorics 2015, volume 424 of London Math. Soc. Lecture Note Ser., pages 49-118. Cambridge Univ. Press, Cambridge, 2015.
https://doi.org/10.1017/CBO9781316106853.003
P. Erdős. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292-294, 1947.
https://doi.org/10.1090/S0002-9904-1947-08785-1
P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463-470, 1935.
P. Keevash and Y. Zhao. Codegree problems for projective geometries. J. Combin. Theory Ser. B, 97(6):919-928, 2007.
https://doi.org/10.1016/j.jctb.2007.01.004
D. Mubayi and A. Suk. A survey of hypergraph Ramsey problems. Discrete Math.
Appl., 165:405-428, 2020.
F. P. Ramsey. On a problem in formal logic. Proc. Lond. Math. Soc., 30:264-286, 1930.
https://doi.org/10.1112/plms/s2-30.1.264
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Simona Boyadzhiyska, Allan Lo