Big Ramsey degrees in the metric setting

EUROCOMB’23

Abstract
Oscillation stability is an important concept in Banach space theory which happens to be closely connected to discrete Ramsey theory. For example, Gowers proved oscillation stability for the Banach space $c_0$ using his now famous Ramsey theorem for $\mathrm{FIN}_k$ as the key ingredient. We develop the theory behind this connection and introduce the notion of compact big Ramsey degrees, extending the theory of (discrete) big Ramsey degrees. We prove existence of compact big Ramsey degrees for the Banach space $\ell_\infty$ and the Urysohn sphere, with an explicit characterization in the case of $\ell_\infty$.

Pages:
134–141
References

Martin Balko, David Chodounský, Natasha Dobrinen, Jan Hubička, Matěj Konečný, Lluis Vena, and Andy Zucker. Exact big Ramsey degrees via coding trees. arXiv:2110.08409, 2021.

Martin Balko, David Chodounský, Natasha Dobrinen, Jan Hubička, Matěj Konečný, Lluis Vena, and Andy Zucker. Characterisation of the big Ramsey degrees of the generic partial order. arXiv:2303.10088, 2023.

Martin Balko, David Chodounský, Jan Hubička, Matěj Konečný, Jaroslav Nešetřil, and Lluís Vena. Big Ramsey degrees and forbidden cycles. In Jaroslav Nešetřil, Guillem Perarnau, Juanjo Rué, and Oriol Serra, editors, Extended Abstracts EuroComb 2021, pages 436-441, Cham, 2021. Springer International Publishing.
https://doi.org/10.1007/978-3-030-83823-2_68

Martin Balko, David Chodounský, Jan Hubička, Matěj Konečný, and Lluis Vena. Big Ramsey degrees of 3-uniform hypergraphs are finite. Combinatorica, 42(2):659-672, 2022.
https://doi.org/10.1007/s00493-021-4664-9

Denis Campau Devlin. Some partition theorems and ultrafilters on ω. ProQuest LLC, Ann Arbor, MI, 1980. Thesis (Ph.D.)-Dartmouth College.

Natasha Dobrinen. The Ramsey theory of the universal homogeneous triangle-free graph. J. Math. Log., 20(2):2050012, 75, 2020.
https://doi.org/10.1142/S0219061320500129

Natasha Dobrinen. Ramsey theory of homogeneous structures: current trends and open problems, 2021. To appear in the Proceedings of the International Congress of Mathematicians-2022.

Natasha Dobrinen. The Ramsey theory of Henson graphs. J. Math. Log., 23(1):2250018, 2023.
https://doi.org/10.1142/S0219061322500180

W. T. Gowers. Lipschitz functions on classical spaces. European J. Combin., 13(3):141-151, 1992.
https://doi.org/10.1016/0195-6698(92)90020-Z

Greg Hjorth. An oscillation theorem for groups of isometries. Geom. Funct. Anal., 18(2):489-521, 2008.
https://doi.org/10.1007/s00039-008-0664-9

Jan Hubička. Big Ramsey degrees using parameter spaces. ArXiv:2009.00967, 2023.
https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-019

A. S. Kechris, V. G. Pestov, and S. Todorcevic. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal., 15(1):106-189, 2005.
https://doi.org/10.1007/s00039-005-0503-1

C. Laflamme, N. W. Sauer, and V. Vuksanovic. Canonical partitions of universal structures. Combinatorica, 26(2):183-205, 2006.
https://doi.org/10.1007/s00493-006-0013-2

Jordi Lopez-Abad and Lionel Nguyen Van Thé. The oscillation stability problem for the Urysohn sphere: A combinatorial approach. Topology and its Applications, 155(14):1516-1530, 2008.
https://doi.org/10.1016/j.topol.2008.03.011

Dragan Mašulović. Finite big Ramsey degrees in universal structures. Journal of Combinatorial Theory, Series A, 170:105137, 2020.
https://doi.org/10.1016/j.jcta.2019.105137

Lionel Nguyen Van Thé. Big Ramsey degrees and divisibility in classes of ultrametric spaces. Canadian Mathematical Bulletin, 51(3):413-423, 2008.
https://doi.org/10.4153/CMB-2008-042-7

Lionel Nguyen Van Thé and Norbert W. Sauer. The Urysohn sphere is oscillation stable. Geom. Funct. Anal., 19(2):536-557, 2009.
https://doi.org/10.1007/s00039-009-0007-5

Edward Odell and Thomas Schlumprecht. The distortion problem. Acta Math., 173(2):259-281, 1994.
https://doi.org/10.1007/BF02398436

Stevo Todorcevic. Introduction to Ramsey spaces, volume 174 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2010.
https://doi.org/10.1515/9781400835409

Andy Zucker. Big Ramsey degrees and topological dynamics. Groups Geom. Dyn., 13(1):235-276, 2019.
https://doi.org/10.4171/GGD/483

Andy Zucker. On big Ramsey degrees for binary free amalgamation classes. Advances in Mathematics, 408:108585, 2022.
https://doi.org/10.1016/j.aim.2022.108585

Metrics

0

Views

0

PDF views