Nonrepetitive colorings of Rd
EUROCOMB’23
114–119
P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, New York, 2005.
A. de Grey. The chromatic number of the plane is at least 5. Geombinatorics, 28:18-31, 2018.
M. Dębski, J. Grytczuk, B. Nayar, U. Pastwa, J. Sokół, M. Tuczyński, P. Wenus, and K. Węsek. Avoiding multiple repetitions in euclidean spaces. SIAM Journal on Discrete Mathematics, 34(1):40-52, 2020.
https://doi.org/10.1137/18M1180347
M. Dębski, U. Pastwa, and K. Węsek. Grasshopper avoidance of patterns. Electron. J. Combin., 23:1-16, 2016.
https://doi.org/10.37236/6210
J. Grytczuk, K. Kosiński, and M. Zmarz. Nonrepetitive colorings of line arrangements. European Journal of Combinatorics, 51:275-279, 2016.
https://doi.org/10.1016/j.ejc.2015.05.013
M. Rosenfeld. Another approach to non-repetitive colorings of graphs of bounded degree. Electronic Journal of Combinatorics, 27(3), 2020.
https://doi.org/10.37236/9667
A. Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators. Springer, New York, 2008.
https://doi.org/10.1007/978-0-387-74642-5
I. M. Wanless and D. R. Wood. A general framework for hypergraph coloring. SIAM Journal on Discrete Mathematics, 36(3):1663-1677, 2022.
https://doi.org/10.1137/21M1421015
P. Wenus and K. Węsek. Nonrepetitive and pattern-free colorings of the plane. European Journal of Combinatorics, 54:21-34, 2016.
https://doi.org/10.1016/j.ejc.2015.12.002
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Kathleen Barsse, Daniel Gonçalves, Matthieu Rosenfeld