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Abstract

For a multi-set λ = {k1, k2, . . . , kq} of positive integers, let kλ = ∑
q
i=1 ki. A λ-list

assignment of G is a list assignment L of G such that the colour set ⋃v∈V (G)L(v) can
be partitioned into the disjoint union C1∪C2∪ . . .∪Cq of q sets so that for each i and
each vertex v of G, ∣L(v) ∩Ci∣ ≥ ki. We say G is λ-choosable if G is L-colourable for
any λ-list assignment L of G. The concept of λ-choosability puts k-colourability and
k-choosability in the same framework: If λ = {k}, then λ-choosability is equivalent
to k-choosability; if λ consists of k copies of 1, then λ-choosability is equivalent to
k-colourability. If G is λ-choosable, then G is kλ-colourable. On the other hand,
there are kλ-colourable graphs that are not λ-choosable, provided that λ contains an
integer larger than 1. Let φ(λ) be the minimum number of vertices in a kλ-colourable
non-λ-choosable graph. This paper determines the value of φ(λ) for all λ.
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1 Introduction
A proper colouring of a graph G is a mapping f ∶ V (G) → N such that f(u) ≠ f(v) for
any edge uv of E(G). The chromatic number χ(G) of G is the minimum positive integer
k such that G is k-colourable, i.e., there is a proper colouring f of G using colours from
{1,2, . . . , k}. The choice number ch(G) of G is the minimum positive integer k such that
G is k-choosable, i.e., if L is a list assignment which assigns to each vertex v a set L(v) ⊆ N
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of at least k integers as permissible colours, then there is a proper colouring f of G such
that f(v) ∈ L(v) for each vertex v.

It follows from the definitions that χ(G) ≤ ch(G) for any graph G, and it was shown
in [5] that bipartite graphs can have arbitrarily large choice number. An interesting prob-
lem is for which graphs G, χ(G) = ch(G). Such graphs are called chromatic-choosable.
Chromatic-choosable graphs have been studied extensively in the literature. There are a
few challenging conjectures that assert certain families of graphs are chromatic-choosable.
The most famous problem concerning this concept is perhaps the list colouring conjecture,
which asserts that line graphs are chromatic-choosable [1]. Another problem concerning
chromatic-choosable graphs that has attracted a lot of attention is the minimum order of
a non-chromatic-choosable graph with given chromatic number. For a positive integer k,
let

φ(k) =min{n ∶ there exists a non-k-choosable k-chromatic n-vertex graph}.

Ohba [20] conjectured that φ(k) ≥ 2k + 2. In other words, k-colourable graphs on at most
2k + 1 vertices are k-choosable. This conjecture was studied in many papers [14,16,18–22,
24,25], and was finally confirmed by Noel, Reed and Wu [18]. This lower bound is tight if
k is even, i.e., φ(k) = 2k + 2 when k is even. Noel [17] further conjectured that if k is odd,
then k-colourable graphs on at most 2k + 2 vertices are also k-choosable. Recently, the
authors of this paper confirmed Noel’s conjecture [28], and determined the value of φ(k)
for all k.

Theorem 1. [28] For k ≥ 2,

φ(k) =
⎧⎪⎪⎨⎪⎪⎩

2k + 2, if k is even,
2k + 3, if k is odd.

The concept of λ-choosability is a refinement of choosability introduced in [32]. Assume
that λ = {k1, k2, . . . , kq} is a multi-set of positive integers. Let kλ = ∑q

i=1 ki and ∣λ∣ = q. A
λ-list assignment of G is a list assignment L such that the colour set ⋃v∈V (G)L(v) can be
partitioned into the disjoint union C1 ∪ C2 ∪ . . . ∪ Cq of q sets so that for each i and each
vertex v of G, ∣L(v)∩Ci∣ ≥ ki. Note that for each vertex v, ∣L(v)∣ ≥ ∑q

i=1 ki = kλ. So a λ-list
assignment L is a kλ-list assignment with some restrictions on the set of possible lists. We
say G is λ-choosable if G is L-colourable for any λ-list assignment L of G.

For a positive integer a, let mλ(a) be the multiplicity of a in λ. If mλ(a) = m, then
instead of writing m times the integer a, we may write a ⋆m. For example, λ = {1 ⋆ k1,2 ⋆
k2,3} means that λ is a multi-set consisting of k1 copies of 1, k2 copies of 2 and one copy
of 3. If λ = {k}, then λ-choosability is the same as k-choosability; if λ = {1 ⋆ k}, then
λ-choosability is equivalent to k-colourability [32]. So the concept of λ-choosability puts
k-choosability and k-colourability in the same framework.

Assume that λ = {k1, k2, . . . , kq} and λ′ = {k′1, k′2, . . . , k′p}. We say λ′ is a refinement of
λ if p ≥ q and there is a partition I1 ∪ I2 ∪ . . . ∪ Iq of {1,2, . . . , p} such that ∑j∈It k

′

j = kt
for t = 1,2, . . . , q. We say λ′ is obtained from λ by increasing some parts if p = q and
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kt ≤ k′t for t = 1,2, . . . , q. We write λ ≤ λ′ if λ′ is a refinement of λ′′, and λ′′ is obtained
from λ by increasing some parts. It follows from the definitions that if λ ≤ λ′, then
every λ-choosable graph is λ′-choosable. Conversely, it was proved in [32] that if λ /≤ λ′,
then there is a λ-choosable graph which is not λ′-choosable. In particular, λ-choosability
implies kλ-colourability, and if λ ≠ {1 ⋆ kλ}, then there are kλ-colourable graphs that are
not λ-choosable.

All the partitions λ of a positive integer k are sandwiched between {k} and {1 ⋆ k}
in the above order. As observed above, {k}-choosability is the same as k-choosability,
and {1 ⋆ k}-choosability is equivalent to k-colourability. For other partitions λ of k, λ-
choosability reveals a complex hierarchy of colourability of graphs sandwiched between k-
colourability and k-choosability. The framework of λ-choosability provides room to explore
generalizations of colourability and choosability results or problems (see [8, 10,32])

2 Preliminaries
In this paper, we are interested in Ohba type question for λ-choobility. Similar to the
definition of φ(k), for a multi-set λ of positive integers, we define φ(λ) as follows:

Definition 1. Assume λ is a multi-set of positive integers. Let

φ(λ) =min{n ∶ there exists a non-λ-choosable kλ-chromatic n-vertex graph}.

If λ = {1 ⋆ k}, then λ-choosable is equivalent to k-colourable. In this case, we set
φ(λ) = ∞. We call such a multi-set λ trivial. In the following, we only consider non-trivial
multi-sets of positive integers.

If λ = {k}, then φ(λ) = φ(k). The value of φ(k) is determined in Theorem 1. For
general multiset λ of positive integers, the function φ(λ) was first studied in [30]. Let
mλ(odd) be the number of odd integers in λ. The following result was proved in [30].

Theorem 2. For any non-trivial multi-set λ of positive integers,

2kλ +mλ(1) + 2 ⩽ φ(λ) ⩽min{2kλ +mλ(odd) + 2,2kλ + 5mλ(1) + 3}.

If mλ(1) =mλ(odd) = t, then it follows from Theorem 2 that φ(λ) = 2kλ+t+2. However,
when mλ(1) and mλ(odd) −mλ(1) are both large, then the gap between the upper and
lower bounds for φ(λ) in Theorem 2 becomes large.

3 Main result
This paper proves Theorem 3 below, which strengthens Theorem 1 and Theorem 2 and
determines the value of φ(λ) for all λ.

Theorem 3. Assume λ is a non-trivial multi-set of positive integers. Then

φ(λ) =min{2kλ +mλ(odd) + 2,2kλ + 3mλ(1) + 3}.
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Below is a sketch of the proof of Theorem 3.
By Theorem 2, to prove Theorem 3, it suffices to consider the case that mλ(odd) >

mλ(1).
First we consider the case that mλ(1) = 0 and mλ(odd) > 0. In this case, we need to

show that φ(λ) = 2kλ + 3.
Let kλ = k. By Theorem 2, 2k+2 ≤ φ(λ) ≤ 2k+3. So it suffices to show that φ(λ) ≠ 2k+2,

i.e., any graphG with χ(G) ≤ k and ∣V (G)∣ ≤ 2k+2 is λ-choosable. We only need to consider
the case that G is a complete k-partite graph. The following result was proved in [29].

Theorem 4. Assume G is a complete k-partite graph with ∣V (G)∣ ≤ 2k + 2. Then G is
k-choosable, unless k is even and G =K4,2⋆(k−1) or G =K3⋆(k/2+1),1⋆(k/2−1).

Thus we may assume that k is even and G =K4,2⋆(k−1) or G =K3⋆(k/2+1),1⋆(k/2−1). We say
a k-list assignment L of G is bad if G is not L-colourable. All bad assignments forK4,2⋆(k−1)

and K3⋆(k/2+1),1⋆(k/2−1) are characterized in [4] and [29], respectively and we can verify that
such bad list assignments is not λ-list assignment (using the assumptionmλ(odd) > 0). This
implies that all graphs K4,2⋆(k−1) and K3⋆(k/2+1),1⋆(k/2−1) are λ-choosable. This completes
the proof for the case mλ(1) = 0.

Next we consider the case that mλ(1) = a ≥ 1 and mλ(odd) −mλ(1) = c ≥ 1. We need
to show that φ(λ) =min{2k + a + c + 2,2k + 3a + 3}. First, we prove the upper bound, i.e.,

φ(λ) ≤min{2k + a + c + 2,2k + 3a + 3}.

By Theorem 2, φ(λ) ≤ 2k + a + c + 2. It remains to show that φ(λ) ≤ 2k + 3a + 3. Observe
that kλ = k, mλ(1) = a and mλ(odd) = a + c implies that {1 ⋆ a,2 ⋆ (k − a − 3c)/2,3 ⋆ c} is a
refinement of λ. Hence it suffices to prove the following lemma.

Lemma 5. Assume λ = {1 ⋆ a,2 ⋆ b,3 ⋆ c} and k = a + 2b + 3c (and hence mλ(1) = a,
mλ(odd) = a + c and kλ = k). Then there exists a k-chromatic graph G with ∣V (G)∣ =
2k + 3a + 3 which is not λ-choosable.

LetG =K5⋆(a+1),2⋆(k−a−1) be the complete k-partite graph with partite sets Ui = {ui,1, ui,2,
ui,3, ui,4, ui,5} where i = 1,2, . . . , a + 1, and Vj = {vj,1, vj,2} where j = 1,2, . . . , k − a − 1.

Let Si = {si,1, si,2, . . . , si,6} be pairwise disjoint sets of size 6 where i = 1,2, . . . , c and let
Ti = {ti,1, ti,2, ti,3, ti,4} be pairwise disjoint sets of size 4 where i = 1,2, . . . , b. Let E be a set
of a colours, and the sets E,Si, Ti are pairwise disjoint and let

A1 =
c

⋃
i=1

{si,1, si,3, si,5}, A2 =
c

⋃
i=1

{si,1, si,3, si,6}, A3 =
c

⋃
i=1

{si,1, si,2, si,4}, A4 =
c

⋃
i=1

{si,2, si,3, si,4},

A5 =
c

⋃
i=1

{si,2, si,5, si,6}, A6 =
c

⋃
i=1

{si,1, si,2, si,3}, A7 =
c

⋃
i=1

{si,4, si,5, si,6},

B1 =
b

⋃
i=1

{ti,2, ti,3}, B2 =
b

⋃
i=1

{ti,2, ti,4}, B3 =
b

⋃
i=1

{ti,1, ti,2}, B4 =
b

⋃
i=1

{ti,1, ti,3},

B5 =
b

⋃
i=1

{ti,1, ti,4}, B6 =
b

⋃
i=1

{ti,1, ti,2}, B7 =
b

⋃
i=1

{ti,3, ti,4}.
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Let L be the λ-list assignment of G defined as follows:

L(v) =
⎧⎪⎪⎨⎪⎪⎩

Aj ∪Bj ∪E, if v = ui,j,1 ≤ i ≤ a + 1,1 ≤ j ≤ 5,

Aj+5 ∪Bj+5 ∪E, if v = vi,j,1 ≤ i ≤ k − a − 1,1 ≤ j ≤ 2,

It can be proved that L is λ-list assignment and G is not L-colourable. The proof is a
little complicated, and the details are omitted.

It remains to prove the lower bound that φ(λ) ⩾min{2k + 3a + 3,2k + a + c + 2}.
Assume to the contrary that φ(λ) <min{2k+a+c+2,2k+3a+3} for some λ. We choose

such a multi-set λ = {k1, k2, . . . , kq} with ∣λ∣ = q minimum. Assume that k1 = k2 = . . . = ka = 1
and 3 ≤ ka+1 ≤ ka+2 ≤ . . . ≤ ka+c are the odd integers in λ.

Let n = min{2k + a + c + 2,2k + 3a + 3}. Then there is a k-chromatic graph G with
∣V (G)∣ ≤ n − 1 which is not λ-choosable. We may assume that G is a complete k-partite
graph with ∣V (G)∣ = n−1 and with partite sets P1, P2, . . . , Pk such that ∣P1∣ ≥ ∣P2∣ ≥ . . . ≥ ∣Pk∣.
For a positive integer i, let

Ii = {j ∶ ∣Pj ∣ = i}.
Note that ∣P1∣ ≥ 3 (as ∣V (G)∣ > 2k). Using the assumption mλ(1) ≥ 1 and the minimality
of ∣λ∣, we can conclude that ∣P1∣ ≤ 4, and if c ≤ 2a + 1, then ∣P1∣ ≤ c − 2a + 3. Since a ≥ 1, we
know that c ≥ 2a ≥ 2, and if c = 2, then a = 1 and ∣P1∣ = 3.

Definition 2. A 4-tuple (a1, a2, a3, a4) of integers is reducible if

0 ≤ ai ≤ ∣Ii∣,
4

∑
i=1

ai = ka+1 and 2ka+1 + 1 ≤
4

∑
i=1

iai ≤ 2ka+1 + 2.

Combining with Theorem 4 and the minimality of ∣λ∣, we conclude that

Claim 6. There is no reducible 4-tuple.

It follows from Claim 6 that ∣I2∣ ≤ ka+1−2 and if c ≥ 3, then ∣I1∣ ≥ 2
3ka+1 and if c = 2, then

∣I1∣ ≥ (ka+1 − 1)/2. Recall that 3 ≤ ∣P1∣ ≤ 4. By Claim 6, we can conclude that if ∣P1∣ = 4,
then ∣I3∣ < ⌊ka+1−∣I2∣−12 ⌋, ∣I4∣ < ⌈ka+1−∣I2∣−2∣I3∣−13 ⌉ + 1 and if ∣P1∣ = 3, then ∣I3∣ < ⌈ka+1−∣I2∣−12 ⌉ + 1.
This contradicts to ∣V (G)∣ = n − 1 ≥ 2k + 1. This completes the proof of Theorem 3.
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