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Abstract

A family F ⊂ 2G of subsets of an abelian group G is a Sidon system if the sumsets
A + B with A,B ∈ F are pairwise distinct. Cilleruelo, Serra and the author previ-
ously proved that the maximum size Fk(n) of a Sidon system consisting of k-subsets
of the first n positive integers satisfies Ckn

k−1 ≤ Fk(n) ≤
(
n−1
k−1
)
+ n − k for some

constant Ck only depending on k. We close the gap by proving an essentially tight
structural result that in particular implies Fk(n) ≥ (1− o(1))

(
n

k−1
)
. We also use this

to establish a result about the size of the largest Sidon system in the binomial random
family

([n]
k

)
p
. Extensions to h-fold sumsets for any fixed h ≥ 3 are also obtained.
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Introduction and main results
A subset A of an abelian group G is a Sidon set if the twofold sums of elements in A are
pairwise distinct. The study of Sidon sets in the integers is a classical topic in additive
number theory, see for instance the survey of O’Bryant [8]. A topic of particular interest
is to determine the maximum size of a Sidon set contained in the first n positive integers.
Seminal results of Erdős and Turán [5] concerning the upper bound, as well as Ruzsa [9],
Bose [2] and Singer [11] for the lower bound established the following result.

Theorem 1 ([5, 11, 2, 9]). A maximum size Sidon set A ⊂ [n] satisfies |A| = (1±o(1))
√
n.
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Interestingly, it is still an open problem to establish the lower order behavior of this
cardinality. The main lower order term in the upper bound stood at n1/4 since 1969, due to
Lindström [7], but the leading constant has recently been pushed below 1 due to Balogh,
Füredi and Souktik [1]. The main question, whether the lower order term diverges or not,
is still wide open.

One can naturally extend the notion of a Sidon set to set systems. Recall that the
sumset (or Minkowski sum) of two sets A and B is defined as

A+B = {a+ b : a ∈ A, b ∈ B}.

For an integer h ≥ 2, we will often write hA as shorthand for the sumset (h − 1)A + A.
In [3], Cilleruelo, Serra and the author defined the following notion of a Sidon system.

Definition 2. Let F ⊂ 2G be a family of subsets of an abelian group G. Then F is a
Sidon system if for any A,B,C,D ∈ F it holds that

A+B = C +D ⇐⇒ {A,B} = {C,D}.

So a Sidon set is just a Sidon system composed entirely of singleton sets. Another way
to interpret Sidon systems in an abelian group G is as Sidon sets in the abelian monoid of
subsets of G together with the sumset operation.

The size and structure of large Sidon systems of k-sets in [n]. In [3] the au-
thors established the following analogue to Theorem 1. We write Fk(n) for the maximum
cardinality of a Sidon system composed entirely of k-element subsets of [n].

Theorem 3 ([3]). Let n > k ≥ 2 be positive integers. Then there exists a constant Ck only
depending on k such that

Ckn
k−1 ≤ Fk(n) ≤

(
n− 1

k − 1

)
+ n− k.

The major problem left open in [3] was to conclude whether the upper bound in The-
orem 3 is asymptotically correct. In fact, a case analysis in the specific case of k = 3 did
establish this fact. Actually, the authors formulated a stronger conjecture on the structure
of Sidon systems, motivated by the proof of the upper bound in Theorem 3.

For integers n > k ≥ 2, define the set system(
[n]

k

)
0

= {A ⊂ {0, 1, . . . , n} : |A| = k, 0 ∈ A}.

Then the following conjecture was posed implicitly in [3].

Conjecture 4 ([3]). Let n > k ≥ 3, and suppose F ⊂
(
[n]
k

)
is any family of k-subsets of

the first n integers such that for every A ∈
(
[n]
k

)
0
it holds that

|{x ∈ Z : A+ x ∈ F}| ≤ 1. (1)
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Then one can remove o(nk−1) sets from F to make it a Sidon system. In particular, by
starting with any family that satisfies Eq. (1) with equality,

Fk(n) ∼ nk−1

(k − 1)!
.

As mentioned above, a motivation for Conjecture 4 is the following observation which
is one of the main ideas going into proving the upper bound in Theorem 3. For distinct
A,B ∈

(
[n]
k

)
0
such that x+A, y+A, u+B, v+B are pairwise distinct sets in a Sidon system

F , we must have |x− y| 6= |u− v|. Since the minimum element of any set in
(
[n]
k

)
can be at

most n− k + 1, their positive differences must lie in [n− k]. Hence, after starting with a
set system F as described in Conjecture 4, one can only add at most n− k additional sets
to it before it necessarily contains a violation to the Sidon condition. If k ≥ 3, we see that
n is negligible when compared to nk−1, and so here these additional sets can be ignored.
The same is not true for k = 2, and in fact, while the first part of Conjecture 4 holds here,
the second does not: In [3] the authors showed that the family

F = {{1, n− i}+ {0, i} : i = 1, . . . , n− 1}

is a Sidon system. We see that every set in
(
[n−1]

2

)
0
that has a translation in F except for

{0, n − 1} in fact has two of them. It is also not difficult to check that the size of this
family matches the upper bound given by Theorem 3.

As our first result, we resolve Conjecture 4 in the affirmative. Recall that for an
integer h ≥ 2, a subset A ⊂ G of an abelian group G is called a Bh-set if for any
a1, . . . , ah, b1, . . . , bh ∈ A it holds that

a1 + · · ·+ ah = b1 + · · ·+ bh ⇐⇒ {a1, . . . , ah} = {b1, . . . , bh} as multisets.

This generalizes the notion of Sidon sets by observing that Sidon sets are B2-sets. We
prove the following result.

Theorem 5. For any positive integer k, there exists an integer `(k) = ` such that the
following holds. Let A,B,C,D ⊂ R be B`-sets of cardinality k all having the same minimal
element. Then

A+B = C +D ⇐⇒ {A,B} = {C,D}.

Note that Theorem 5 indeed implies Conjecture 4 by the following argument. Any set
in
(
[n]
k

)
0
that is not a B`-set for some ` corresponds to a solution to a system of linear

equations (
1 0 . . . 0
λ1 λ2 . . . λk

)a1...
ak

 = 0,

with λi ∈ Z,
∑
|λi| ≤ 2` and such that there are at least two indices 0 < i < j ≤ k with

λi, λj 6= 0. In particular, the matrix on the left-hand side has rank 2, and so there are
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at most nk−2 solutions to this system of linear equations in [n]. Since there are clearly at
most (2`)k = Ok(1) such matrices, we see that

(
[n]
k

)
0
contains Ok(nk−2) non-B`-sets for any

` only depending on k, so one can remove their representatives to obtain a Sidon system.
In fact, the following stronger version of Theorem 5 is proved.

Proposition 6. For any positive integer k and h, there exists an integer `(k, h) = ` such
that the following holds. Let G be an abelian group, and let A1, . . . , Ah, B1, . . . , Bh ⊂ G be
B`-subsets of cardinality k all sharing an element. If there exist indices i, j ∈ [h] such that
|Ai ∩Bj| ≥ 2, then

A1 + · · ·+ Ah = B1 + · · ·+Bh ⇐⇒ {A1, . . . , Ah} = {B1, . . . , Bh} as multisets.

This implies Theorem 5 for h = 2, since one can show that in any linearly ordered
group, this minimum intersection requirement is satisfied, even without assuming the sets
to be B`. The key tool in proving Proposition 6 is following simple statement, which holds
in arbitrary abelian groups.

Lemma 7. Let A,B,C ⊂ G be subsets of an abelian group G such that A is a Sidon set.
Then for any set X ⊂ A satisfying |X| > |C|, it holds that

X +B ⊂ A+ C =⇒ B ⊂ C.

It would be interesting to find out whether an intersection size of size 1 in Proposition 6
is actually possible, and we prove some partial results regarding this.

The largest Sidon system in
(
[n]
k

)
p
and δ-additive families. Recall that the bino-

mial random family
(
[n]
k

)
p
is defined such that every k-set A ⊂ [n] is contained in

(
[n]
k

)
p

independently with probability p. We write [n]p for
(
[n]
1

)
p
. An interesting question is to

study a sparse random analogue of determining bounds on Fk(n). That is, instead of
investigating the size of the largest Sidon system in

(
[n]
k

)
, what happens if we do this in(

[n]
k

)
p
? The Sidon set equivalent of this question was answered by Kohayakawa, Lee, Rödl

and Samotij in [6] and they discovered an interesting phase transition. Essentially, as long
as p = o(n−1/3), the expected number of quadruples violating the Sidon set condition is
negligible when compared to the expected size of the random set, and hence standard
concentration bounds tell us that the size of the largest Sidon subset will be the same as
the size of the random set. For p in the range between n−1/3 and constant, the situation
is similar to that in [n], that is, the size of the largest Sidon subset is approximately the
square root of np, the size of the random set. This range can be seen as an example of the
transference principle (cf. [4, 10]) that says that results in the dense setting can be moved
to the sparse random one in appropriate contexts. Since the problem is clearly monotone
in nature, the situation when n−2/3 ≤ p ≤ n−1/3 is that the largest Sidon subset must stay
constant in the exponent at approximately n1/3. Let us summarize.
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Theorem 8 ([6]). Let 0 ≤ a ≤ 1 be a fixed constant. Suppose p = p(n) = (1 + o(1))n−a.
There exists a constant b = b(a) such that almost surely the largest Sidon subset of [n]p has
size nb+o(1). Furthermore,

b(a) =


1− a, if 2/3 ≤ a ≤ 1,

1/3, if 1/3 ≤ a ≤ 2/3,

(1− a)/2, if 0 ≤ a ≤ 1/3.

Our second main result establishes a somewhat less nuanced analogue of Theorem 8.
It will be helpful to change the language from the absence to the appearance of additive
structures.

Definition 9. Let G be an abelian group and suppose A,B,C,D ⊂ G are subsets. We
say that (A,B,C,D) forms an additive quadruple if A + B = C + D, and furthermore, it
is called nontrivial if {A,B} 6= {C,D}.

Hence, a Sidon system is a family that contains no nontrivial additive quadruples. We
can now define a relative version of this concept.

Definition 10. Let G be an abelian group and δ > 0. Then a finite family of subsets
F ⊂ 2G is called δ-additive if every subfamily G ⊆ F with |G| ≥ δ|F| contains a nontrivial
additive quadruple.

Using Theorem 5, we are able to determine the threshold probability for when
(
[n]
k

)
p
is

δ-additive.

Theorem 11. Let k ≥ 2 be a fixed integer and δ ∈ (0, 1). Then there exist constants C, c
that only depend on k, δ such that

lim
n→∞

Pr

((
[n]

k

)
p

is δ-additive

)
=

{
1, if p ≥ c/n

0, if p ≤ C/n
.

Recalling that Fk(n) ≤ Ok(nk−1) by Theorem 3, this immediately gives us the following
analogue of Theorem 8.

Corollary 12. Let k ≥ 2 be a fixed integer. Then there exist constants C, c that only
depend on k such that asymptotically almost surely, the largest Sidon system F ⊂

(
[n]
k

)
p

has size

|F| =

{
Θ(nk−1), if p ≥ C/n

Θ(nkp), if p ≤ c/n
.

In other words, we are essentially always in the regime that one can remove a negli-
gible number of k-subsets in order to transform the random family into a Sidon system
comparable to the p = o(n−2/3) case for Sidon sets.
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