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Abstract

An oriented graph is called antidirected if it has no directed path with 2 edges.
We prove that asymptotically, any oriented graph D of minimum semidegree greater
than k

2 contains every balanced antidirected tree of bounded degree and with k edges,
and D also contains every antidirected subdivision H of a sufficiently small complete
graph Kh, with a mild restriction on the lengths of the antidirected paths in H re-
placing the edges of Kh, and with H having a total of k edges.
Further, we address a conjecture of Addario-Berry, Havet, Linhares Sales, Reed and
Thomassé stating that every digraph on n vertices and with more than (k−1)n edges
contains all antidirected trees with k edges. We show that their conjecture is asymp-
totically true in oriented graphs for balanced antidirected trees of bounded degree
and size linear in n.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-113

1 Introduction
In extremal graph theory, a typical task is to determine conditions on the minimum or
the average degree of a graph G (the ‘host graph’) which guarantee that G contains some
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specific subgraph. We study this type of question for oriented host graphs and restricting
ourselves to finding antidirected subgraphs.

We present three theorems. The first of these relates high semidegree to the existence
of balanced antidirected trees, where we call an oriented tree balanced if its bipartition
classes have the same size.

Theorem 1.1. For all η ∈ (0, 1), c ∈ N there is n0 such that for all n ≥ n0 and k ≥
ηn, every oriented graph D on n vertices with δ0(D) > (1 + η)k

2
contains every balanced

antidirected tree T with k edges and with ∆(T ) ≤ (log(n))c.

The second theorem relates high semidegree to the existence of antidirected subdivisions
of complete graphs. For h, k ∈ N, consider any subdivision H of Kh where each edge
e ∈ E(Kh) is substituted by a path with g(e) edges, with

∑
e∈E(Kh)

g(e) = k, and such that
the edges of Kh with g(e) < 3 induce a forest in Kh. If H has antidirected orientations,
then call any antidirected orientation of H a long k-edge antidirected subdivision of Kh.

Theorem 1.2. For all η ∈ (0, 1) there are n0 ∈ N, γ > 0 such that for each n ≥ n0, each
k ≥ ηn and each h ≤ γ

√
n the following holds. Every oriented graph D on n vertices with

δ0(D) > (1 + η)k
2

contains each long k-edge antidirected subdivision of Kh.

The third theorem related high edge density to the existence of balanced antidirected
trees.

Theorem 1.3. For all η ∈ (0, 1), c ∈ N, there is n0 ∈ N such that for every n ≥ n0 and
every k ≥ ηn, every oriented graph D on n vertices with more than (1 + η)(k − 1)n edges
contains each balanced antidirected tree T with k edges and ∆(T ) ≤ (log(n))c.

Each of our theorems will be motivated and discussed in one of the sections below
(the sections follow the same order we chose for stating the theorems here). We provide
a discussion of the context of the results and include a sketch of the proof of each of the
results. We refer to [14] for more discussion and full proofs.

2 Paths and trees
Dirac (see [5]) observed that if an undirected connected graph G on at least k+ 1 vertices
satisfies δ(G) ≥ k

2
, then G contains a k-edge path (here and later, k is any natural number,

independent of the order of the host graph). Trying to translate this result to oriented
graphs, a natural possibility would be to replace the minimum degree by the minimum
semidegree δ0(D), which is defined as the minimum over all the in- and all the out-degrees
of the vertices in D, and to ask for certain oriented paths in D.

Jackson [7] showed that every oriented graph D with δ0(D) > k
2
contains the directed

path on k edges. The first author conjectured [13] that in this result, the directed path can
be replaced with any oriented path of the same length. This conjecture is best possible
for directed paths [7] and also for antidirected paths: observe that in an `-blow-up of
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the directed triangle (where each vertex is replaced with ` independent vertices), any
antidirected path covers at most 2` vertices. We show that the conjecture from [13] is
asymptotically true:

Corollary 2.1. For all η ∈ (0, 1) there is n0 such that for all n ≥ n0 and k ≥ ηn every
oriented graph D on n vertices with δ0(D) > (1 + η)k

2
contains every antidirected path with

k edges.

To see that Corollary 2.1 follows from Theorem 1.1, observe that any path either is
balanced, or can be extended by one to become balanced. (In the latter case we apply
Theorem 1.1 with a sufficiently smaller η.)

Note that the class of trees considered in Theorem 1.1 is very similar to antidirected
paths, not only because of the balancedness, but also because of the bounded degree. In
graphs, there is a very well-known result for finding bounded degree trees by Komlós,
Sárközy and Szemerédi [10]. It states that asymptotically, every graph of minimum degree
larger than n

2
contains every spanning tree of maximum degree at most O( n

logn
). Recently,

this result was extended to digraphs by Kathapurkar and Montgomery [8]. Theorem 1.1 can
be considered as a version for smaller antidirected trees of Kathapurkar and Montgomery’s
result, in oriented graphs.

We actually prove a stronger version of Theorem 1.1, namely Theorem 2.2 below, which
allows us to choose where the root of the antidirected tree goes. This more general result
will be useful in the proof of Theorem 1.3.

Theorem 2.2. For all η ∈ (0, 1), c ∈ N there is n0 such that for all n ≥ n0 and k ≥ ηn the
following holds for every oriented graph D on n vertices with δ0(D) > (1 + η)k

2
, and every

balanced antidirected tree T with k edges and ∆(T ) ≤ (log(n))c. For each set V ∗ ⊆ V (D)
with |V ∗| ≥ ηn and for each x ∈ V (T ), there is an embedding of T in D with x mapped to
V ∗.

Sketch of the proof of Theorem 2.2
Given an oriented graph D and an antidirected tree T fulfilling the conditions of the
theorem, we apply the digraph regularity lemma to D to find a partition into a bounded
number of clusters Ci. The reduced oriented graph R will have a minimum semidegree
similar to the one of D (proportionally). Let x ∈ V (T ) and V ∗ ⊆ V (D) be given, with
|V ∗| ≥ ηn. Note that at least one cluster Ci contains η|Ci| vertices from V ∗. Let C∗ be
one such cluster.

Next, we need the concept of a connected antimatching : this is a set M of disjoint
edges in D such that every pair of edges in M is connected by an antidirected walk or
simply antiwalk, which is a sequence of edges that alternate direction. The length of an
antidirected walk is its number of edges, where we count repeated edges once for each time
they appear.

We show that the minimum semidegree in the reduced oriented graph R suffices to en-
sure that R contains a large connected antimatchingM . Further, the antiwalks connecting
the edges of M have bounded length:
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Lemma 2.3 (Lemma 4.8 in [14]). Let t ∈ N+, let D be an oriented graph with δ0(D) ≥ t,
and let w ∈ V (D). Then D has a connected antimatching M = {aibi}1≤i≤t of size t, with
w = a1, and such that, for every 1 ≤ i ≤ t, there is an antiwalk of length at most 8t
containing aibi and a1b1.

Now we turn to our antidirected tree T . We decompose T into a family T of small
subtrees, connected by a constant number of vertices. This type of decomposition has been
widely used lately, appearing for the first time in [3]. We prove that it is possible to assign
the trees in T to edges of M in a way that they will fit comfortably into the corresponding
clusters, while respecting the orientations. We let Pi denote the set of trees in T that are
assigned to the clusters associated to the edge aibi ∈M .

We now embed T as follows. In each step, we embed one small tree S ∈ T . When we
choose a new small tree to embed, we make sure that we keep the embedded part connected
in the underlying tree. We embed the first d levels of S into the clusters of an antiwalk WS

in R that starts in the cluster containing the image of the parent of the root of S and ends
in aibi, if S ∈ Pi. The remaining levels of S are embedded into the clusters corresponding
to ai and bi.

Since T has bounded maximum degree, the union of the first d levels of the trees in
T is very small, and therefore it is not a problem that the first d levels of each S ∈ T
are embedded in the connecting antidirected walk WS. After going through all S ∈ T , we
have embedded all of T . For the full proof see [14]. �

3 Subdivisions and cycles
Mader [11] proved that there is a function g(h) such that every (undirected) graph of mini-
mum degree at least g(h) contains a subdivision of the complete graph Kh. Thomassen [15]
showed that a direct translation of this result to digraphs is not true. Mader [12] suggested
to replace the subdivision of the complete digraph with the transitive tournament, i.e. the
tournament without directed cycles:

Conjecture 3.1 (Mader [12]). There is a function f(h) such that every digraph of min-
imum outdegree at least f(h) contains a subdivision of the transitive tournament of order
h.

This conjecture is open even for h = 5. Aboulker, Cohen, Havet, Lochet, Moura and
Thomassé [1] observed that in Conjecture 3.1, the minimum outdegree can be replaced with
the minimum semidegree, and the resulting conjecture is equivalent to Conjecture 3.1. Our
Theorem 1.2 can be seen as a version of Conjecture 3.1 for oriented graphs and antidirected
subdivisions of Kh.

For h = 3, the objects found in Theorem 1.2 are antidirected cycles. In the existing
literature, there are already a number of results on finding oriented cycles with conditions
on the minimum semidegree. We will quickly discuss those related to antidirected cycles.

For an oriented cycle C, the cycle type of C is defined as the number of forward edges
minus the number of backwards edges of C. Note that antidirected cycles have cycle type
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0. Kelly, Kühn and Osthus [9] showed that for each k ≥ 3 and η > 0 every large enough
n-vertex oriented graph of minimum semidegree at least ηn contains all oriented cycles of
length at most k and cycle type 0. Further, δ0(D) ≥ 3n

8
+ o(n) is enough to find a copy

of any oriented cycle of length between 3 and n in an oriented graph D [9]. Both results
give (quite different) bounds on the semidegree for antidirected cycles. While in the first
result, the cycle is small compared to n, in the second result there are antidirected cycles
of any even length. Theorem 1.2 provides us with an intermediate semidegree bound for
finding an antidirected cycle of medium length:

Corollary 3.2. For all η ∈ (0, 1) there is n0 such that for all n ≥ n0 and k ≥ ηn, every
oriented graph D on n vertices with δ0(D) > (1 + η)k

2
contains any antidirected cycle of

length at most k.

Indeed, this corollary follows from Theorem 1.2 since any antidirected cycle with more
than four edges can be expressed as a long antisubdivision of K3, while antidirected C4 is
guaranteed by the results of [9].

Sketch of the proof of Theorem 1.2
Let D be an oriented graph satisfying the conditions of Theorem 1.2. Let a long k-
antisubdivision of Kh be given and remove two consecutive inner vertices (along with all
adjacent edges) from one of the long antidirected paths of this antisubdivision. Keep re-
moving two vertices from other long antidirected paths until we are left with an antidirected
tree T . Denote by P the set of long antidirected paths of which we removed vertices.

As in the proof of Theorem 2.2, we find a connected antimatching M in the reduced
graph R of D. We embed the branch vertices of the antisubdivision into a pair of clusters
B, C, such that BC is some fixed edge of M . We start embedding the long antipaths in
the clusters corresponding to edges of M , using the antiwalks given by Lemma 2.3 to move
between the matching edges.

The only vertices left are the ones removed at the beginning. Since their neighbours
are already embedded in B ∪ C, they can be embedded in B ∪ C by regularity. For all
details see [14].

4 Edge density
In 1970, Graham [6] confirmed a conjecture he attributes to Erdős: for every antidirected
tree T there is a constant cT such that every sufficiently large directed graph D on n
vertices and with at least cTn edges contains T . A similar statement is false for other
oriented trees [2, 4]. In 1982, Burr [4] gave an improvement of Graham’s result: Every
n-vertex digraph D with more than 4kn edges contains each antidirected tree T on k edges,
and provides an example where (k − 1)n edges are not sufficient. In 2013, Addario-Berry,
Havet, Linhares Sales, Reed and Thomassé [2] formulate the following conjecture.
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Conjecture 4.1 (Addario-Berry et al. [2]). Every n-vertex digraph D with more than
(k − 1)n edges contains each antidirected tree on k edges.

Theorem 1.3 implies that Conjecture 4.1 is approximately true in oriented graphs for
all balanced antidirected trees of bounded maximum degree.

Sketch of the proof of Theorem 1.3
Given the antidirected tree T and the oriented graph D as in the theorem, we start by
finding a non-empty oriented subgraph D′ of D where each vertex has either out-degree at
least k

2
or out-degree 0, and either in-degree at least k

2
or in-degree 0 (see Lemma 7.1 in

[14]). We construct a new oriented graph D′′ consisting of four copies of D′, two of them
with all edges reversed. Because of the way we put those copies together, D′′ will have
minimum semidegree greater than k

2
.

Using Theorem 2.2, we embed T into D′′, with the root v of T embedded in one of
the copies of D′ with the original orientations. Taking a little more care, we can ensure
that an edge at v is also embedded in this copy. It is then easy to deduce that all of T is
embedded into the same copy. Since D′ ⊆ D, we proved the statement. For the full proof
see [14]. �
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