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Abstract

We show that there is a constant c such that any 3-uniform hypergraph H with n
vertices and at least cn5/2 edges contains a triangulation of the real projective plane
as a sub-hypergraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon,
and Zakharov. Furthermore, our work, combined with prior results, asymptotically
determines the Turán number of all surfaces.
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1 Introduction
Turán-type questions are fundamental in the study of extremal combinatorics. Given a
fixed r-uniform hypergraph F , its Turán number ex(n,F) is the maximum number of
edges in an r-uniform hypergraph H on n vertices which does not contain F as a sub-
hypergraph. Estimating Turán numbers for hypergraphs remains a largely open problem;
we refer the reader to the surveys [1, 3, 9] for a general overview.

In this paper, we investigate a topological variant of this problem. Any r-uniform
hypergraph H may be viewed as an (r − 1)-dimensional simplicial complex whose facets
are the edges of H. Similarly, one may ask if any sub-hypergraph of H is homeomorphic
to a given (r − 1)-dimensional simplicial complex X. This topological perspective yields
many natural generalizations of graph properties to higher dimensions. For example, one
analogue of Hamiltonian cycles in 3-uniform hypergraphs that has received some attention
(see [2, 8]) is a spanning sub-hypergraph homeomorphic to the 2-sphere. Additionally,
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one is naturally interested in the following extremal quantity. Let X be a closed (r − 1)-
dimensional manifold. Denote by exhom(n,X) the maximum number of edges in a r-uniform
hypergraph H on n vertices such that no sub-hypergraph of H is homeomorphic (as a
simplicial complex) to X. This is the Turán number of the topological space X.

As part of his program in high-dimensional combinatorics, Linial [7] asked for the
asymptotics of exhom(n,X) when r ≥ 3. Linial’s question was partially motivated by the
work of Sós, Erdős, and Brown [11] some decades prior, which showed that exhom(n,X) =
Θ(n5/2) when X is the 2-sphere S2. Linial [7] sketched a new proof of the lower bound
exhom(n,S2) = Ω(n5/2) which generalized to all closed, connected 2-manifolds X; this proof
is given rigorously in [5, §2]. We call such a 2-manifold a surface.

All surfaces fall into one of three categories: the sphere S2, the connected sum of
g ≥ 1 tori, or the connected sum of k ≥ 1 real projective planes. Until recently, it was
unknown if the lower bound of n5/2 was asymptotically tight for the latter two classes.
Indeed, Linial [6, 7] repeatedly conjectured a matching upper bound for the torus T2, i.e.
that exhom(n,T2) = O(n5/2). Kupavskii, Polyanskii, Tomon, and Zakharov [5] proved
Linial’s conjecture in 2020. Additionally, they showed that if two surfaces X1, X2 satisfy
exhom(n,Xi) = O(n5/2), their connected sum X1#X2 also satisfies exhom(n,X1#X2) =
O(n5/2), thereby extending the upper bound exhom(n,X) = O(n5/2) to orientable surfaces
of the form X = T2# · · ·#T2. They were unable to derive the corresponding result for
any non-orientable surfaces, but conjectured that the same bound applies to all surfaces.

Our main result is the resolution of this conjecture. We show that Linial’s lower bound
is asymptotically tight for the real projective plane RP2.

Theorem 1.1. We have exhom(n,RP2) = O(n5/2).

By Kupavskii, Polyanskii, Tomon, and Zakharov’s result on connected sums, this bound
generalizes to all non-orientable surfaces X = RP2# · · ·#RP2. Combining our work with
the results of Sós, Erdős, and Brown [11] for the sphere and Kupavskii, Polyanskii, Tomon,
and Zakharov [5] for all other orientable surfaces, we completely determine the asymptotics
of exhom(n,X) for any surface X.

Theorem 1.2. Let X be any surface. Then exhom(n,X) = Θ(n5/2), where the constant
coefficients may depend on the surface X.

In the remaining two sections, we sketch the proof of Theorem 1.1. We first describe
how to build a hypergraph homeomorphic to RP2 out of smaller substructures. Then, we
give an overview of the probabilistic techniques required to locate these substructures.

2 Deconstructing RP2

Our proof of Theorem 1.1 begins by identifying conditions under which a 3-uniform hyper-
graph H contains a sub-hypergraph homeomorphic to RP2.

We decompose RP2 as two copies of D2 attached to S1 ∨ S1. Consider the standard
representation of RP2 as a disk with boundary glued to itself antipodally — this is pictured
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Figure 1: Two loops a and b in RP2 based at the point v0. Here, RP2 is depicted
as a disk with boundary points identified antipodally.

ba v0

Figure 2: Two loops a and b in S1 ∨ S1 sharing the same basepoint v0.

in Fig. 1. Let a and b be the loops in RP2 depicted, with a traversing half the boundary of
the disk and b a diameter of the disk. The union of a and b, shown in Fig. 2, is a subspace
of RP2 homeomorphic to S1 ∨ S1. Moreover, RP2 can be recovered from this subspace by
attaching two copies of D2 — one corresponding to each semicircular region of Fig. 1 — to
the concatenated loops ab and a−1b. This is summarized in the following proposition.

Proposition 2.1. Let a and b be the two loops in S1 ∨ S1 shown in Fig. 2. Form a CW
complex from S1∨S1 by attaching one disk to the loop ab and another disk to the loop a−1b.
The resulting topological space is homeomorphic to RP2.

Let D2− be the quotient of D2 obtained by gluing together two points x, y on the bound-
ary of D2. Proposition 2.1 decomposes RP2 as a union of two copies of D2− intersecting on
their shared boundary, a subspace of RP2 homeomorphic to S1 ∨ S1.

Now, suppose H is a 3-uniform hypergraph. For a vertex u ∈ V (H), we denote by Hu

its link graph, the graph on V (H)\{u} whose edges vw correspond to 3-edges uvw ∈ E(H).
For distinct vertices u and u′ of H, we write Hu,u′ = Hu ∩ Hu′ ; that is, Hu,u′ is the graph
on V (H) \ {u, u′} with edge set E(Hu) ∩ E(Hu′).

One might attempt to build RP2 using the following naïve approach. Choose vertices
u, u′ and cycles C,C ′ ⊆ Hu,u′ so that C and C ′ intersect in a single vertex v0, implying
that C∪C ′ is homeomorphic to S1∨S1. Let A,A′ ⊆ H be sub-hypergraphs induced by the
edge sets E(A) = {ue : e ∈ E(C) ∪ E(C ′)} and E(A′) = {u′e : e ∈ E(C) ∪ E(C ′)}. One
hopes that A and A′ are copies of D2− whose union is homeomorphic to RP2, and indeed
this is almost true. However, the 1-simplex uv0 (resp. u′v0) is contained in four different
edges of A (resp. A′), so neither A nor A′ is homeomorphic to D2−.

To obtain a homeomorphic copy of RP2, we alter the hypergraphs A and A′ to avoid
these four-way intersections. The resulting construction is pictured in Fig. 3. Let v1, v2
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Figure 3: Building RP2 from cycles C,C ′ ⊆ Hu,u′ and disks D,D′ ⊆ H.

be the two neighbors of v0 in C, and let v3, v4 be the two neighbors of v0 in C ′. Consider
the edge subsets D = {uv0v1, uv0v3} ⊆ E(A) and D′ = {u′v0v2, u′v0v3} ⊆ E(A′), which
correspond to disks with boundaries v0v1uv3v0 and v0v2u′v3v0 respectively. We locate al-
ternate sub-hypergraphs D,D′ ⊆ H homeomorphic to disks with the same boundaries, and
replace D and D′ with them. If D and D′ are chosen appropriately, the altered hypergraphs
(A\D)∪D and (A′ \D′)∪D′ are homeomorphic to D2− with shared boundary C ∪C ′. In
fact, they are created by attaching disks to C ∪ C ′ along the loops v0v2

C· · · v1v0v3
C′
· · · v4v0

and v0v1
C· · · v2v0v3

C′
· · · v4v0, respectively. Using Proposition 2.1, one can show that their

union is homeomorphic to RP2.

3 Probabilistic Techniques
We have reduced Theorem 1.1 to finding substructures C,C ′,D,D′ of a 3-uniform hyper-
graph H arranged as in Fig. 3. We locate these substructures via a probabilistic approach,
analyzing the likelihood that a randomly chosen subset of V (H) will contain each of these
substructures. To quantify these probabilities, we require some new definitions. Write
U ⊆p V to indicate that U is a randomly chosen subset of V , containing each vertex
independently with probability p.

Definition 3.1. Fix p, ε ∈ (0, 1]. Let H be a 3-uniform hypergraph and let x1, . . . , x4 be
four distinct vertices of H. Sampling U ⊆p V (H), let Ax1x2x3x4 be the event that there is
some sub-hypergraph D ⊆ H[{x1, . . . , x4} ∪ U ] which is homeomorphic to a disk bounded
by the 4-cycle x1x2x3x4, and which contains neither 1-simplex x1x3 or x2x4. We say the
4-cycle x1 · · ·x4 is (p, ε)-disk-coverable if Pr[Ax1···x4 ] ≥ 1− ε.

Kupavskii, Polyanskii, Tomon, and Zakharov implicitly studied disk-coverability when
upper-bounding the Turán number of the torus in [5]. They introduced the following
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related notion.

Definition 3.2. Fix p, ε ∈ (0, 1]. Let G be a graph and e = xy an edge of G. Sample
U ⊆p V (G) and let Ae be the event that there is a cycle containing xy in G[U ∪ {x, y}].
We say the edge e is (p, ε)-admissible if Pr[Ae] ≥ 1− ε.

The concept of admissibility is useful due to the following observation: if an edge vw in
a link graph Hu,u′ is (p, ε)-admissible, then the 4-cycle uvu′w is (p, ε)-disk-coverable. This
is because any cycle v0 · · · v` with v = v0 and w = w` gives rise to a sub-hypergraph with
edge set

`−1⋃
i=0

{vivi+1u, vivi+1u
′},

which is homeomorphic to a disk with boundary uvu′w.
At this point, we may sketch the proof of Theorem 1.1. Given a hypergraph H, we

locate vertices u, u′, v0, · · · , v4, cycles C,C ′ ⊆ Hu,u′ , and disks D,D′ ⊆ H as pictured in
Fig. 3.

Proof Overview of Theorem 1.1. Let p = 1/4 and fix ε (to be determined later). Let H be
a 3-uniform hypergraph with at least cn5/2 edges. If c is sufficiently large in terms of p
and ε then, using techniques from [5], we may pass to a sub-hypergraph H′ ⊆ H with at
least c

2
n5/2 edges such that for any neighboring edges xyz, x′yz ∈ H′, the 4-cycle xyx′z is

(p, ε)-disk-coverable in H.
We locate vertices u, u′, a graph G ⊆ H′u,u′ , and incident edges v0v1, v0v3 ∈ E(G) which

are both (p, δ)-admissible in G, with δ = 1/3. Additionally, we show that degG(v0) is at
most some fixed constant d, which is computed in terms of the admissibility parameters
(p, δ). The details of this step may be found in [10].

Choose v2 ∈ NG(v0) uniformly at random and partition V (G) = U1 ∪ · · · ∪ U4 by
placing each vertex in a given set Ui independently with probability p = 1/4. Consider the
following three events.

(A1) There are cycles C,C ′ satisfying the inclusions v0v1 ⊂ C ⊂ G[U1 ∪ {v0, v1}] and
v0v3 ⊂ C ′ ⊂ G[U2 ∪ {v0, v3}].

(A2) The cycle C described in (A1) contains v1v0v2 as a subpath.

(A3) There are D,D′ ⊆ H homeomorphic to disks with boundaries uv1v0v3 and u′v2v0v3
whose non-boundary vertices are contained in U3 and U4, respectively. Moreover, D
does not contain the 1-simplex uv0, and D′ does not contain the 1-simplex u′v0.

If all three events hold simultaneously, then the structures C,C ′,D,D′ do not intersect
except at the vertices u, u′, v0, v1, v3. To obtain a homeomorphic copy of RP2, we must
additionally ensure that the structures do not contain any of these five vertices unless
mentioned in (A1) and (A3). This is summarized in the following two conditions.

(B1) We have v3 /∈ C and v1 /∈ C ′.
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(B2) We have u′ /∈ D and u /∈ D′.
It remains to show that the five events (A1), (A2), (A3), (B1), (B2) occur simultaneously
with positive probability.

Because the edges v0v1 and v0v3 are (p, δ)-admissible in G, the event (A1) occurs with
probability at least 1−2δ = 1/3. To additionally show that v3 /∈ C and v1 /∈ C ′, as in (B1),
we check that the edges v0v1 and v0v3 are admissible (with suitable parameters) in G− v3
and G− v1, respectively. If xy ∈ E(G) is a (p, δ)-admissible edge in G and G′ = G− z is
a subgraph created by deleting a third vertex z from G, then

Pr
U ′⊆pV (G′)

[@ cycle in G′[U ′ ∪ {x, y}] containing xy]

= Pr
U⊆pV (G)

[@ cycle in G[U ∪ {x, y}] containing xy | z /∈ U ]

≤
PrU⊆pV (G)[@ cycle in G[U ∪ {x, y}] containing xy]

PrU⊆V (G)[z /∈ U ]
≤ δ

1− p
.

It follows that the edges v0v1 and v0v3 are (p, δ
1−p)-admissible in G − v3 and G − v1,

respectively. Thus, with probability at least 1− 2δ
1−p = 1/9, there are cycles C,C ′ satisfying

(A1) and (B1).
Notice that (A2) is independent of (A1) and (B1) — the latter two events depend only

on the choice of U1, . . . , U4, while (A2) depends on the choice of v2. It follows that (A1),
(B1), (A2) simultaneously hold with probability at least 1

9
Pr[(A2)] = 1/9d.

Lastly, we consider (A3) and (B2). Observe that uv1v0 and uv3v0 are neighboring edges
ofH′, so uv1v0v3 is (p, ε)-disk-coverable inH. Similarly, u′v2v0v3 is also (p, ε)-disk-coverable
in H. It follows that (A3) holds with probability at least 1 − 2ε. To additionally include
(B2), we note that uv1v0v3 and u′v2v0v3 are (p, ε

1−p)-disk-coverable in H − u′ and H − u,
respectively, by a calculation analogous to that for (B1) above. Thus, (A3) and (B2) hold
simultaneously with probability at least 1− 2ε

1−p ≥ 1− 3ε.
By a union bound, the five events (A1), (B1), (A2), (A3), (B2) hold simultaneously

with probability at least 1/9d−3ε. Thus, assuming that ε was chosen to satisfy ε < 1/27d,
there is a sub-hypergraph of H homeomorphic to RP2.
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