
Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

The Rado Multiplicity Problem
in Vector Spaces over Finite Fields

(Extended abstract)

Juanjo Rué∗ Christoph Spiegel†

Abstract

We study an analogue of the Ramsey multiplicity problem for additive structures,
establishing the minimum number of monochromatic 3-APs in 3-colorings of Fn3 and
obtaining the first non-trivial lower bound for the minimum number of monochromatic
4-APs in 2-colorings of Fn5 . The former parallels results by Cumings et al. [3] in ex-
tremal graph theory and the latter improves upon results of Saad andWolf [13]. Lower
bounds are notably obtained by extending the flag algebra calculus of Razborov [11].
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1 Introduction
In 1959 Goodman [7] proved that asymptotically at least a quarter of all vertex triples in
any graph must either form a clique or an independent set. This lead to the study of the
Ramsey multiplicity problem, where one would like to determine the minimum number of
monochromatic cliques of prescribed size over any edge-coloring of the complete graph [5,
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15, 2]. Recently there has been an increased interest in studying the arithmetic analogue
of this type of question, originally initiated when Graham, Rödl, and Ruczinsky [8] gave
an asymptotic lower bound for the minimum number of monochromatic Schur triples in
2-colorings of the first n integers in 1996, see also [12, 14, 4, 1].

In this extended abstract, we focus on the analogue of the Ramsey multiplicity problem
for specific additive structures in vector spaces over finite fields of small order. Let q ∈
N be a fixed prime power throughout and write Fq for the finite field with q elements.
Given a subset T ⊆ Fnq and a linear map L defined by some matrix A ∈ Mr×m(Z)
with integer entries co-prime to q, we are interested in studying the set SL(T ) = {s =
(s1, . . . , sm) ∈ Tm : L(s) = 0 and si 6= sj for i 6= j} of solutions with all-distinct entries in
T . Throughout, we will assume that A is of full rank and that SL(Fnq ) 6= ∅. We will also
write sL(T ) = |SL(T )|/|SL(Fnq )|. Writing [c] = {1, . . . , c} for some given number of colors
c ∈ N, we call γ : Fnq → [c] a c-coloring of dimension dim(γ) = n and let γ(i) denote the
set of elements colored with color 1 ≤ i ≤ c as well as Γc(q, n) for the set of all c-colorings
of Fnq . The Rado multiplicity problem is concerned with determining

mc(L, q) = lim
n→∞

min
γ∈Γc(q,n)

sL(γ(1)) + . . .+ sL(γ(c)). (1)

The limit exists by monotonicity and we have 0 ≤ mc(L, q) ≤ 1 by definition. Rado’s
theorem establishes that mc(L, q) > 0 and we say that L is c-common for q if mc(L, q) =
c1−m, that is if the minimum number of monochromatic solutions is attained in expectation
by a uniform random coloring. For r = 1 a result of Cameron, Cilleruelo, and Serra [1]
establishes that any L is 2-common ifm is odd. Whenm is even, Saad and Wolf [13] showed
that any L where the coefficients can be partitioned into pairs, with each pair summing to
zero, is 2-common. Fox, Pham, and Zhao [6] showed that this sufficient condition is in fact
also necessary. The case when r > 1 is much less understood, with Kamčev, Liebenau, and
Morrison [9] recently characterizing a large family of non-common linear maps by showing
that any L that ‘induces’ some smaller 2×4 linear map is uncommon. Focusing on specific
values of q, Král, Lamaison, and Pach [10] also recently characterized the 2-common L
for q = 2 when r = 2 and m is assumed to be odd. When q = 5, the most relevant
additive structures to study is that of 4-APs. Saad and Wolf [13] showed that they are
not 2-common by establishing an upper bound of 1/8 − 7 · 210 · 5−2 ≈ 0.1247 < 2−4. We
establish the first non-trivial lower bound for this problem and an improved upper bound.

Proposition 1.1. We have 1/10 < m(L4-AP, 5) ≤ 13/126 = 0.1031746.

Going beyond 4-APs, we can also show thatm(L5-AP, 5) ≤ 1/26 < 2−4, establishing that
5-APs are likewise not 2-common in F5, but in this case did not obtain any meaningful lower
bound. The study of monochromatic structures in colorings with more than two colors has
also proven relevant in extremal graph theory. Most notably, Cummings et al. [3] extended
the results of Goodman [7] by establishing the exact Ramsey multiplicity of triangles in
3-colorings and showing that they are not 3-common despite being 2-common. We consider
a similar question and establish the exact multiplicity of 3-APs in 3-colorings of Fn3 .
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Theorem 1.2. We have m3(L3-AP, 3) = 1/27.

We can also show that 0.04486 ≤ m3(LSchur, 2) ≤ 1/16 as well as m3(LSchur, 3) ≤ 7/81,
establishing that Schur triples are also not 3-common for q = 2 and q = 3. Upper bounds
of all results are obtained through explicit blowup-type constructions. Lower bounds in
the graph theoretic setting have recently been obtained through a computational approach
relying on flag algebras due to Razborov [11]. This approach has been extended to different
contexts, but so far seems to not have been explored in the arithmetic setting.

2 The correct notion of isomorphism
Let us omit q and c from notation, so in particular we write Γ(n) = Γc(q, n) for the set of
all c-colorings of dimension n as well as Γ =

⋃∞
n=0 Γ(n). The 0-dimensional vector space

consist of a single point, that is F0
q = {0}, and we write ej for the j-th canonical unit basis

vector of Fnq for 1 ≤ j ≤ n as well as e0 for the zero vector.

Definition 2.1. We refer to an affine linear map ϕ : Fkq → Fnq as a morphism and say that
it is t-fixed for some t ≥ 0 if ϕ(ej) = ej for all 0 ≤ j ≤ t. A morphism is a monomorphism
whenever it is injective and a monomorphism is an isomorphism whenever n = k.

Out of notational convenience, we extend the range of t to −1 in order to include unfixed
morphisms and will always use t+ to denote max{t, 0}. For a given t ≥ −1 and n ≥ k ≥ t+,
we let Mt(k;n) denote the set of t-fixed morphisms from Fkq to Fnq up to t-fixed isomorphism
of Fkq . We likewise write Mont(k;n) for the set of monomorphisms with the same properties.
Given k1, . . . , km ≥ t+ and n ≥ k1 + . . .+km−(m−1) t+, we let Mont(k1, . . . , km;n) denote
the set of all tuples of monomorphisms (ϕ1, . . . , ϕm) ∈ Mont(k1;n) × . . . × Mont(km;n)
overlapping only in the t-fixed subspace.

Using these notions, we say two colorings γ1, γ2 ∈ Γ(n) are t-fixed isomorphic for
some t ≥ −1, denoted by γ1

∼=t γ2, if there exists a t-fixed isomorphism ϕ : Fnq → Fnq
satisfying γ1 ≡ γ2 ◦ ϕ. We let Γt(n) = Γ(n)/ ∼=t denote the set of all c-colorings of
Fnq up to t-fixed isomorphism and also write Γt =

⋃
n≥t+ Γt(n). Given k1, . . . , km ≥ t+

and n ≥ k1 + . . . + km − (m − 1) t+, the density pt(δ1, . . . , δm; γ) of some colorings δ1 ∈
Γt(k1), ..., δm ∈ Γt(km) in γ ∈ Γt(n) is defined as the probability that a a tuple of t-
fixed monomorphism chosen uniformly at random from Mont(k1, . . . , km;n) induces copies
of δ1, . . . , δm in γ. For n ≥ k ≥ t+, we also let the degenerate density pdt (δ; γ) of some
δ ∈ Γt(k) in γ denote the probability that a not-necessarily-injective t-fixed morphism
does the same.

3 The correct notion of solution
In order to develop the flag algebra approach, the density of solutions needs to be repre-
sentable as the weighted density of particular colorings, motivating the following definition.
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Definition 3.1. For any t ≥ −1 and n ≥ t+, the t-fixed dimension dimt(s) of s ∈ SL(Fnq )
is the smallest k ≥ t+ for which there exists a t-fixed k-dim. subspace of Fnq containing s.

We will only need the unfixed and 0-fixed dimension and denote by dimt(L) the largest
t-fixed dimension of any solution to a given linear map L. In general, dimt(L) = m− r+ t
for any linear map L when t ≥ 0 as well as dim−1(L) = m − r − 1 when L is invariant ,
that is if for any solution s = (x1, . . . , xm) ∈ SL(Fnq ) and element a ∈ Fnq we have a + s =
(a + x1, . . . , a + xm) ∈ S ′L(Fnq ). We say that L is admissible if t ≥ 0 or if t = −1 and L is
invariant. A solution s ∈ SL(Fnq ) for some admissible L is t-fixed fully dimensional if dimt(s)
attains the respective upper bound. For a given set T ⊆ Fnq , we denote the set of fully
dimensional solutions to some admissible L by StL(T ) and write stL(T ) = |StL(T )| / |StL(Fnq )|.

The important property that we make use of is that each fully-dimensional solution
defines a unique dim(L)-dimensional t-fixed subspace in which it lies and that for any
t ≥ −1, admissible L, and n ≥ t ≥ 0, the number of solutions in a subset of Fnq is invariant
under t-fixed isomorphism. The same would not hold for t = −1 if L was not invariant.

4 The flag algebras for additive structures
For any t ≥ 0, we refer to elements of Γt(t) = Γ(t) as types of dimension t. We also
introduce a unique empty type, denoted by ∅, of dimension t = −1. For a given type τ
of dimension t, we refer to a coloring F ∈ Γt(n) satisfying F ◦ idt,n ≡ τ as a flag of type
τ , where idt,n denotes the unique t-fixed isomorphism from Ftq to Fnq and the requirement
is vacantly true for t = −1. We will write F τn for the set of all flags of given type τ and
dimension n as well as F τ =

⋃
nF τn .

Definition 4.1. The flag algebra Aτ of type τ is given by equipping RF τ/Kτ , where
Kτ = {F −

∑
F ′∈Fτn

pt(F ;F ′)F ′ : F ∈ F τ , n ≥ dim(F )}, with the product given by the
the bilinear extension of F1 · F2 =

∑
H∈Fτn

pt(F1, F2;H)H + Kτ defined for any two flags
F1, F2 ∈ F τ and arbitrary n ≥ dim(F1) + dim(F2)− dim(τ).

Assume we are given a parameter λ : Γ → R that is invariant under tλ-fixed isomor-
phisms for some tλ ≥ −1 and that satisfies λ(γ) =

∑
β∈Γtλ (n) λ(β) ptλ(β, γ) for some nλ ∈ N

and all γ ∈ Γtλ , where nλ ≤ n ≤ dim(γ). Monochromatic fully-dimensional solutions to
a given linear map L define such a parameter with tλ = 0 for general L and tλ = −1 for
invariant ones, where in either case nλ = dimtλ(L). We are interested in determining

λ? = lim
n→∞

min
γ∈Γtλ (n)

λ(γ). (2)

Writing Cτ
λ =

∑
β∈Fτnλ

λ(β) β for any type τ of dimension tλ, our problem of determining
λ? can be restated through the conic optimization problem

λ? = max{λ′ ∈ R : Cτ
λ ≥ λ′ for all types τ of dimension tλ}, (3)
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where we write Hom+(Aτ ,R) for the set of positive homomorphisms, that is algebra ho-
momorphisms φ ∈ Hom(Aτ ,R) satisfying φ(F ) ≥ 0 for any F ∈ F τ , and Sτ = {f ∈ Aτ :
φ(f) ≥ 0 for all φ ∈ Hom+(Aτ ,R)} for the semantic cone of type τ . Noting that we can
define a linear downward operator [[·]]tλ: Aτ → Aτλ for any type τ of dimension t ≥ tλ that
satisfies [[Sτ ]]tλ ⊆ Sτλ , we can derive a lower bound by defining a set of types T as well as
sets of algebra elements Bτ ′ ⊂ Aτ

′ and establishing that

Cτ
λ ≥ λ′ +

∑
τ ′∈T

∑
f∈Bτ ′

[[f 2]]tλ . (4)
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