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Abstract

Let H = (X, E) be a hypergraph. A support is a graph Q on X such that for
each E ∈ E , the subgraph of Q on the elements in E is connected. We consider
hypergraphs defined on a host graph. Given a graph G = (V,E), with c : V → {r,b}
and a collection of connected subgraphs H of G, a primal support is a graph Q on
b(V ) such that for each H ∈ H, the subgraph Q[b(H)] on vertices b(H) = H∩c−1(b)
is connected. A dual support is a graph Q∗ on H s.t. for each v ∈ X, the subgraph
Q∗[Hv] is connected, where Hv = {H ∈ H : v ∈ H}. We present sufficient conditions
on the host graph and hyperedges so that the resulting support comes from a restricted
family.

We primarily study two classes of graphs: (1) If the host graph has genus g and the
hypergraphs satisfy a topological condition of being cross-free, then there is a primal
and a dual support of genus at most g. (2) If the host graph has treewidth t and the
hyperedges satisfy a combinatorial condition of being non-piercing, then there exist
primal and dual supports of treewidth O(2t). We show that this exponential blow-up
is sometimes necessary. As an intermediate case, we also study the case when the
host graph is outerplanar. Finally, we show applications of our results to packing and
covering, and coloring problems on geometric hypergraphs.
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1 Introduction
A hypergraph (X, E) is defined by a set X of elements and a collection E of subsets of X.
A support is a graph Q on X s.t. ∀ E ∈ E , the subgraph Q[E] induced by the vertices of
E is connected. The notion of a support was introduced by Voloshina and Feinberg [28] in
the context of VLSI circuits. Since then, this notion has found wide applicability in several
areas, such as visualizing hypergraphs [7, 8, 9, 10, 11, 16, 18], in the design of networks
[2, 4, 5, 12, 17, 22, 25], and similar notions have been used in the analysis of local search
algorithms for geometric problems [3, 6, 13, 23, 24, 27].

Any hypergraph clearly has a support: a complete graph on X is a support. The
problem becomes interesting if we introduce a global constraint on the graph that is in
tension with the local connectivity requirement for each hyperedge. In particular, we are
interested in restrictions on the hypergraph that guarantees the existence of a support from
a sparse family of graphs, namely a family with sub-linear sized separators1. A support
from a family G of graphs is called a G support.

Our motivation to study the existence of such supports comes primarily from the analy-
sis of local search algorithms for several packing and covering problems defined by geometric
objects in the Euclidean plane. With the aim of extending the analysis techniques from
the plane to other surfaces, we study hypergraphs defined on a sparse host graph.

A geometric hypergraph is defined by a set P of points in R2, and a set D of regions,
or subsets of R2, where the hyperedges are defined by D ∩P for each D ∈ D. We call this
hypergraph a primal hypergraph to distinguish it from other hypergraphs we will define
shortly.

If D is a collection of pseudodisks,2 Pyrga and Ray [26] showed that the hypergraph
(P,D) admits a planar support. Raman and Ray in [27] generalized this result to show
that if the regions in a geometric hypergraph are non-piercing3, then the hypergraph (P,D)
admits a planar support. The authors also show that the dual hypergraph (D, {Dp}p∈P ),
where for each p ∈ P , Dp = {D ∈ D : D 3 p} admits a planar support.

For an arrangement D of pseudodisks in the plane in general position4, let G denote
the dual arrangement graph, whose vertices are the cells in the arrangement, and two cells
are adjacent if they share an arc of the boundary of a pseudodisk. It is easy to see that
the dual arrangement graph G is a plane graph, and each pseudodisk D corresponds to a
connected subgraph HD of G. Further, for any pair of subgraphs HD, HD′ corresponding to

1A graph has a sublinear sized separator if there is some constant ε > 0, and c > 0 such that there is
a set S of size O(|V |1−ε) such that G \ S can be partitioned into two subgraphs A and B s.t. there is no
edge in G \ S between a vertex in A and a vertex in B, and s.t. |V (A)|, |V (B)| ≤ c|V (G)|.

2A collection of simple Jordan curves define a set of pseudocircles if each pair intersects either 0 or
twice. A collection of bounded regions whose boundaries are a collection pseudocircles are a collection of
pseudodisks.

3a collection of regions H, where each H ∈ H is a path-connected region bounded by a simple Jordan
curve (possibly with holes) is non-piercing if both H \H ′ and H ′ \H are connected.

4An arrangement D of pseudodisks in the plane is in general position if there are no three pseudodisks
whose boundaries pass through a common point, and at each intersection point, the boundaries of the pair
of pseudodisks defining the intersection point properly cross.
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pseudodisksD andD′, respectively, the graphs G[HD\HD′ ] and G[HD′\HD] are connected,
i.e., H = {HD : D ∈ D} is a collection of non-piercing subgraphs of G. This motivates the
following definition:

Definition 1 (Non-piercing). For a graph G, a collection of connected subgraphs H of G
is non-piercing if for any two subgraphs H,H ′ ∈ H, both G[H \ H ′] and G[H ′ \ H] are
connected.

For each cell c in the arrangement D, let vc denote the vertex in the dual arrangement
graph G corresponding to this cell. If c ∩ P 6= ∅, set color(vc) = b, and if c ∩ P = ∅, set
color(vc) = r. Let b(V ) and r(V ) denote respectively, the subsets of vertices in color−1(b)
and color−1(r). The result of Pyrga and Ray [26] translated in this context says that for
a plane graph G with color : V → {r,b}, and a collection of connected subgraphs H s.t.
H is non-piercing, there is a planar support on color−1(b), i.e., a planar graph Q on the
vertices color−1(b) s.t. the subgraph Q[H] is connected for each H ∈ H.

Our goal is to generalize the results above to the setting where the host graph comes
from a non-trivial graph class. If the host graph G has bounded genus and H is a collection
of connected non-piercing subgraphs of G, we may expect, as in the case of pseudodisk
hypergraphs above, that there exist bounded genus supports for the primal and dual hy-
pergraphs. While the statement may be true for primal hypergraphs. However, for the
dual hypergraph, this is not true: Let G be the torus grid graph Tn,n = Cn�Cn[29]. The
subgraphs are the n non-contractible cycles perpendicular to the hole, and the n non-
contractible cycles parallel to the hole. Each vertex of the graph belongs to exactly two
subgraphs forcing them to be adjacent in the dual support, and thus the dual support is
Kn,n which is not embeddable on the torus for large enough n.

For bounded genus graphs, we show that if the subgraphs satisfy a condition of being
cross-free, then there exists bounded genus supports for the primal as well as the dual hy-
pergraphs. In the plane, the cross-free condition is weaker than the non-piercing condition,
but these two conditions are incomparable on higher genus surfaces.

If we restrict attention to host graphs of bounded treewidth, we show that if the sub-
graphs are non-piercing then both the primal and dual supports have bounded treewidth.
However, the treewidth of the support could be exponentially larger than the treewidth of
the host graph. Along the way, we also consider outerplanar graphs, which have treewidth
2. Here, we show a distinction between the primal and dual settings. For the primal setting,
the cross-free condition on the hypergraphs is sufficient to obtain an outerplanar support,
while in the dual setting, we show that restricting the subgraphs to be non-piercing is a
sufficient condition to obtain a dual outerplanar support.

2 Preliminaries
Let H be a collection of connected subgraphs of a graph G = (V,E). This defines a
hypergraph (V,H). We call the pair (G,H) a graph system. If G comes from a class G of
graphs, and H satisfies property P we say that (G,H) is a P -G system. Further, if G has
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genus g, we say that (G,H) has genus g. In particular, if G is planar, we say that (G,H)
is a planar system. Let c : V → {r,b} be a coloring of V with two colors. Let b(V ) and
r(V ) denote respectively c−1(b) and c−1(r).

For a graph system (G,H), a primal support is a graph Q on b(V ) s.t. ∀ H ∈ H,
Q[b(H)] is connected5, i.e., a support for the primal hypergraph (V,H). A dual support
is a graph Q∗ on H s.t. ∀ v ∈ V , Q∗[Hv] is connected6, where Hv = {H ∈ H : H 3 v},
i.e., a support for the dual hypergraph (H, {Hv}v∈V (G)). For a graph G and two families of
connected subgraphsH and K of G, let the 3-tuple (G,H,K) denote an intersection system.
An intersection support is a graph Q̃ that is a support for the intersection hypergraph
(H, {HK}K∈K), where HK = {H ∈ H : K ∩ H 6= ∅}. The notion of an intersection
hypergraph generalizes both the primal and dual hypergraphs defined above.

3 Bounded genus graphs
Let (G,H) be a graph system of genus g. Consider a cellular7 embedding of G in an
oriented surface of genus g. For a pair of subgraphs H,H ′ ∈ H, we define the notion of a
reduced graph that is required for the definition of a cross-free system.

Definition 2 (Reduced graph). Let (G,H) be a graph system with G cellularly embedded
in an oriented surface. For any two subgraphs H,H ′ ∈ H, the reduced graph R(H,H ′) is
the embedded graph obtained from G by contracting all edges, both of whose end-points lie
in H ∩H ′, where multi-edges and self-loops are retained.

Note that if G can be embedded in a surface Σ, then so can be R(H,H ′).

Definition 3 (Cross-free at v). A graph system (G,H) with G cellularly embedded in an
oriented surface, is cross-free at a vertex v ∈ V (G) if for any two subgraphs H,H ′ ∈ Hv,
the following holds: Let ṽ be the image of v in the reduced graph R(H,H ′). Then, there
are no 4 edges ei = {ṽ, vi} in R(H,H ′), i = 1, . . . , 4 incident to ṽ in cyclic order around
ṽ, s.t. v1, v3 ∈ H \H ′, and v2, v4 ∈ H ′ \H.

If there is an embedding of G s.t. (G,H) is cross-free at every vertex of G, we say that
(G,H) is cross-free.

By the Jordan curve theorem, it follows that if (G,H) is a non-piercing planar system,
then the graph system (G,H) is cross-free. It is easy to construct examples to show that
the reverse direction does not hold in the plane.

5Note that we cannot simply project each H on b(V ) as the resulting subgraphs may not be connected
in G.

6To make the definition symmetric, we could have considered a coloring c : H → {r,b}, and required
that Q∗[Hbv ] be connected for each v ∈ V , where Hbv = {H ∈ H : H 3 v and c(H) = b}. However, this
problem reduces to constructing a dual support restricted to the hypergraphs Hb = {H ∈ H : c(H) = b}.
Therefore, in the dual setting, it is sufficient to study the uncolored version of the problem.

7A cellular, or 2-cell embedding of a graph G on a surface is an embedding where the edges are non-
crossing, and each face is homeomorphic to a disk.
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Theorem 4. Let (G,H) be a cross-free system of genus g, with c : V → {r,b}. Then,
there is a support Q of genus at most g on b(V ) i.e., Q[b(H)] is connected for each H ∈ H.

Theorem 5. Let (G,H) be a cross-free system of genus g, then, there is a support Q∗ on
H of genus at most g i.e., Q∗[Hv] is connected for each v ∈ V .

Theorem 6. Let (G,H,K) be a cross-free intersection system of genus g. Then, there
exists an intersection support Q̃ on H of genus at most g.

In all the results above, we use the notion of Vertex Bypassing defined below:

Definition 7. Let G be embedded in an oriented surface Σ. Let N(v) = (v1, . . . , vk, v1) be
the cyclic order of vertices around v. The Vertex Bypassing of v is defined as follows:

1. Subdivide each edge {v, vi} by a vertex ui. Construct a cycle C = (u1, . . . , uk, u1) by
joining consecutive vertices ui, ui+1 (with indices taken mod k) by a simple arc not
intersecting the edges of G s.t. the resulting graph remains embedded in Σ. Remove
the vertex v. Let G′′ denote the resulting graph.

2. ∀ H ∈ Hv, s.t. {v, vi} ∈ H, let H ′′ denote the subgraph of G′′ on (H \ {v}) ∪
{∪vi∈H′′ui} Let H′′v = {H ′′ : H ∈ Hv}. Let H′′ = (H \ Hv) ∪ H′′v (Note that the
subgraphs in H′v may not be connected).

3. Add a set D of non-intersecting chords8 in C so that ∀ H ∈ H′′, H induces a
connected subgraph in C ∪D, and the resulting subgraphs remain cross-free.

Let (G′,H′) be the resulting system.

The heart of the proof is in showing that Step 3 can be done, i.e., there exists a set of
non-intersecting chords that we can add in C so that the resulting subgraphs are connected,
and the system remains cross-free. Assuming we can apply vertex bypassing, the proof of
Theorem 5 follows by repeatedly applying vertex bypassing to a vertex of maximum depth
in G, i.e., to a vertex v in G maximizing |{H ∈ H : H 3 v}|, until each vertex of the graph
is in at most one subgraph. We can then obtain a support by contracting the edges in each
subgraph. The proof of Theorem 6 follows by using Theorem 5 and techniques from the
proof of Theorem 4.

4 Bounded Treewidth graphs
We show that if (G,H) is a graph system, and H is a collection of non-piercing subgraphs
then both the primal and dual supports have treewidth O(2tw(G)) and this exponential
blow-up in the treewidth of the support is sometimes necessary.

8We use the term non-intersecting to mean internally non-intersecting.
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Theorem 8. Let (G,H) be a non-piercing graph system. Let c : V (G) → {r,b} be a
2-coloring of the vertices V (G) of G. Then, there is a support Q on b(V ) s.t. tw(Q) ≤
3 · 2tw(G). Further, Q can be computed in time polynomial in |G|, |H| if G has bounded
treewidth. There exist non-piercing graph systems (G,H) where any support has size
Ω(2tw(G)).

Theorem 9. Let (G,H) be a non-piercing graph system. There is a dual support Q∗ on
H s.t. tw(Q∗) ≤ 4 · 2tw(G). Further, Q∗ can be computed in time polynomial in |G|, |H| if
G has bounded treewidth. There exist non-piercing graph systems (G,H) where any dual
support has size Ω(2tw(G)).

5 Outerplanar Graphs
Let (G,H) be an outerplanar graph system. In the setting of outerplanar graphs, there is
a difference between the primal and dual settings. In the primal setting, if the subgraphs
are cross-free, then there is a primal support that is also outerplanar. In the dual setting,
the cross-free condition is not sufficient. We show an example below. However, restricting
the subgraphs to be non-piercing is sufficient for the system to admit a dual outerplanar
support.

Consider a triangle drawn in the plane (with straight-line segments) with vertices
{1, 2, 3}. Subdivide the segments {1, 2}, {2, 3} and {1, 3} by points 4, 5, and 6 respectively.
Add a triangle on the points 4, 5 and 6. This defines an embedding of an asteroid-triple
G. The subgraphs H are those by the points {1, 4, 2}, {2, 5, 3}, {1, 6, 3} and {4, 5, 6}. It
is easy to check that (G,H) is cross free, and the support for the dual is K4 which is not
outerplanar.

Theorem 10. Let (G,H) be an outerplanar cross-free system, with c : V (G) → {r,b}, a
2-coloring of the vertices V (G) of G. Then, there is an outerplanar support Q on b(V )
i.e., Q[b(H)] is connected for each H ∈ H.

Theorem 11. Let (G,H) be a non-piercing outerplanar system. Then, there is an outer-
planar dual support Q∗ on H.

6 Applications
In this section, we describe some applications of the existence of supports. Raman and
Ray [27] showed that for an intersection hypergraph defined on a set of non-piercing regions
in the plane, there is a planar support (See [27] for precise definitions), which implies a
support for both the primal and dual settings for the hypergraphs defined by points and
non-piercing regions in the plane.

Since graphs of genus g admit separators of size O(
√
gn) [15], all the algorithmic con-

sequence of [27] generalize to cross-free systems on bounded genus graphs. Instead of
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describing a long sequence of results that follow from the existence of supports, we high-
light just three results that follow as a consequence of Theorem 6.

Theorem 12. Let (G,H) be a cross-free system of genus g, then there exists

1. a PTAS for the Dominating Set problem, i.e., find H′ ⊆ H of minimum cardinality
s.t. for each H ∈ H, either H ∈ H′ or H ∩H ′ 6= ∅ for some H ′ ∈ H′.

2. a PTAS for the problem of packing points when each subgraph H ∈ H has capacity DH

bounded by a constant, i.e., find V ′ ⊆ V of maximum cardinality s.t. |H ∩ V ′| ≤ DH

for each H ∈ H.

3. a PTAS for the problem of packing subgraphs when each vertex v ∈ V has capacity
Dv bounded by a constant, i.e., find H′ ⊆ H of maximum cardinality s.t. |{H ∈ H′ :
H 3 v}| ≤ Dv for each v ∈ V .

Keller and Smorodinsky [19] showed that the intersection hypergraph of disks in the
plane can be colored with 4 colors, and this was generalized by Keszegh [20] for pseudodisks,
which was further generalized in [27] to show that the intersection hypergraph of non-
piercing regions is 4-colorable. As a consequence of Theorem 6, we obtain the following.

Theorem 13. Let (G,H,K) be a cross-free intersection system of genus g. Then, H can
be colored with at most 7+

√
1+24g
2

colors such that no hyperedge HK is monochromatic.

Proof. By Theorem 6, (G,H,K) has a support Q̃ of genus at most g. Now, χ(Q̃) ≤ 7+
√
1+24g
2

[14]. Since Q̃ is a support, for each K ∈ K, there is an edge between some two subgraphs
H,H ′ ∈ HK . Therefore, no hyperedge HK is monochromatic.

Keszegh and Pàlvölgyi [21] introduced the notion of ABAB-free hypergraphs. Acker-
man et al., [1] show that these are equivalent to hypergraphs with a stabbed pseudo-disk
representation, i.e., each S ∈ S is mapped to a closed and bounded region DS containing
the origin whose boundary is a simple Jordan curve, each x ∈ X is mapped to a point px
in R2 s.t. px ∈ DS iff x ∈ S. The regions D = {DS : S ∈ S} form a stabbed pseudodisk
arrangement. Let (P,D) denote the embedding of the hypergraph where P = {px : x ∈ X}.

The authors show that to any stabbed pseudodisk arrangement D and a set P of points,
we can add additional pseudodisks D′ s.t. (i) each D′ ∈ D′ contains exactly 2 points of
P , (ii) D ∪ D′ is a pseudodisk arrangement, and (iii) Each D ∈ D s.t. |D ∩ P | ≥ 3
contains a pseudodisk D′ ∈ D′. The graph on P whose edges are defined by D′ is called
the delaunay graph of the arrangement. They show that ABAB -free hypergaphs are 3
colorable by showing that the delaunay graph is outerplanar. This result follows from
Theorem 10 since a support for cross-free outerplanar graph system satisfies the properties
of delaunay graph above.
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