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Abstract

We call a multigraph irregular if it has pairwise distinct vertex degrees. No non-
trivial (simple) graph is thus irregular. The irregularity strength of a graph G, s(G),
is a specific measure of the “level of irregularity” of G. It might be defined as the
least k such that one may obtain an irregular multigraph of G by multiplying any
selected edges of G, each into at most k its copies. In other words, s(G) is the least
k admitting a {1, 2, . . . , k}-weighting of the edges of G assuring distinct weighted
degrees for all the vertices, where the weighted degree of a vertex is the sum of its
incident weights. The most well-known open problem concerning this graph invariant
is the conjecture posed in 1987 by Faudree and Lehel that there exists an absolute
constant C such that s(G) ≤ n

d + C for each d-regular graph G with n vertices and
d ≥ 2, whereas a straightforward counting argument implies that s(G) ≥ n

d + d−1
d .

Until very recently this conjecture had remained widely open. We shall discuss recent
results confirming it asymptotically, up to a lower order term. If time permits we shall
also mention a few related problems, such as the 1–2–3 Conjecture or the concept of
irregular subgraphs, introduced recently by Alon and Wei, and progress in research
concerning these.
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1 Introduction
One of the most basic facts in graph theory is that every simple graph of order at least
two contains a pair of vertices with equal degrees. Thus it cannot be irregular, where
by irregular we mean: containing pairwise distinct vertex degrees. There are irregular
multigraphs, though. In fact any (simple) graph G = (V,E) can be turned into an irregular
multigraph throughout multiplying some of its edges, as long as G has no isolated edge
and at most one isolated vertex. The least k such that it is feasible using at most k
copies of every edge is called the irregularity strength of G and denoted s(G); we set
s(G) = ∞ if this is not possible at all. Note that equivalently, s(G) may be defined
as the least positive integer k for which there is an edge k-weighting, that is a function
ω : E → {1, 2, . . . , k} such that each vertex v ∈ V is attributed a distinct weighted degree
dω(v) :=

∑
u∈N(v) ω(uv). This graph invariant was introduced in the 80s by Chartrand et

al. [11] in relation to research on the concept of irregular graphs of Chartrand, Erdős and
Oellermann [10]. In general it is known that s(G) ≤ n−1 for all graphs with n vertices for
which the parameter is finite except K3 [3, 31], and this upper bound is tight, e.g. for the
family of stars. It can however be significantly decreased for graphs without small degree
vertices. In particular, it is easy to verify that s(G) ≥ n

d
+ d−1

d
for d-regular graphs, while

the central open problem of this field is the following conjecture of Faudree and Lehel [17]
from 1987 (posed first as a question by Jacobson, see [29]).

Conjecture 1. There exists a constant C such that s(G) ≤ n
d

+ C for every d-regular
graph G with d ≥ 2 and order n.

This problem “energized the study of the irregularity strength”, as Cuckler and Lazebnik
stated in [12], and still remains open. A significant step forward towards solving it was
achieved in 2002 by Frieze, Gould, Karoński, and Pfender [20], who used the probabilistic
method to prove the first linear bound s(G) ≤ 48(n/d) + 1 for d ≤

√
n, and a super-

linear one s(G) ≤ 240(log n)(n/d) + 1 in the remaining cases. They also proved similar
bounds for general graphs, with d replaced by the minimum degree δ. For example, they
showed that s(G) = O(n/δ) for the maximum degree ∆ ≤ n1/2. The linear bounds in
n/δ was further extended to the case when d ≥ 104/3n2/3 log1/3 n and δ ≥ 10n3/4 log1/4 n,
respectively, by Cuckler and Lazebnik [12]. The first general and unified linear bound
in n/δ for the full spectrum of (n, δ) was delivered by Przybyło [34, 35], who used a
constructive approach to prove that s(G) ≤ 16(n/d) + 6 and s(G) ≤ 112(n/δ) + 28,
respectively. Since then several attempts based on inventive new algorithms have been
conducted in pursuit towards improvement of the multiplicative constant in front of n/δ,
see e.g. [23, 24, 30]. The best result among these is due to Kalkowski, Karoński, and
Pfender [24], who invented a deterministic algorithm implying that in general, s(G) ≤
6dn/δe for graphs with minimum degree δ ≥ 1 and without isolated edges. Conjecture 1
throughout more than 35 years since its formulation was an inspiration for many results,
see e.g. [3, 5, 8, 12, 13, 15, 16, 17, 18, 20, 22, 24, 30, 31, 33, 34, 35], and various related
problems and concepts, giving rise to a reach and vital branch of graph theory, see [21, 29]
for surveys devoted to some of them. Only just recently it was proved by Przybyło [32] that
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the Faudree-Lehel Conjecture holds asymptotically almost surely for random graphsG(n, p)
(which are typically “close to” regular graphs), for any constant p, and holds asymptotically
for a wide spectrum of values of d [33].

2 Main Results
Developing research from [33], we managed to confirm asymptotically, up to a lower order
term, an extension of Conjecture 1 towards the setting of general graphs.

Theorem 2 ([38]). For every ε ∈ (0, 0.25), there are absolute constants C1, C2 such that
for each graph G with n vertices and minimum degree δ > 0 which does not contain isolated
edges, s(G) ≤ n

δ
(1 + C1

δε
) + C2.

We also confirmed that the generalization of Faudree-Lehel Conjecture holds, not only
asymptotically, for relatively dense graphs.

Theorem 3 ([38]). For every 0.8 < α ≤ 1, there is an absolute constant C such that for
each graph G with n vertices and minimum degree δ ≥ nα, s(G) ≤ n

δ
+ C.

In the case of regular graphs exclusively, we also provided a much shorter argument,
implying a more specific result directly related with Conjecture 1.

Theorem 4 ([39]). Given any ε ∈ (0, 0.25), for every d-regular graph G with n vertices,
if d is sufficiently large in terms of ε, s(G) < n

d
(1 + 14

dε
) + 28.

Theorem 5 ([39]). Given any 0.8 < α ≤ 1, for every d-regular graph G on n vertices with
d ≥ nα, if d is sufficiently large in terms of α, then s(G) < n

d
+ 28.

3 Main Ideas

3.1 General Graphs

A very vague general idea behind our construction yielding Theorems 2 and 3 is to randomly
partition V into a big set B and a small set S, where |S| = (n/δ) · o(δ), in a special and
controlled manner. We then first randomly modify the edge weights so that almost all
vertices in B have distinct weighted degrees. Finally, we locally adjust weighted degrees of
the rest of the vertices in order to differentiate them in entire G.

Our approach can be divided into three main steps.
Step 1 relies on a random construction assuring relatively sparse distribution of weighted

degrees of the vertices in B, i.e. without too many vertex weights in any of the predefined
intervals partitioning positive integers. A general, yet still imprecise idea here is to assign
to every vertex v a random variable Xv ∼ U [0, 1], and then attribute an edge uv a small
weight if Xu + Xv is small, and a large weight, otherwise. This way a small value of Xv
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pulls the weighted degree of v downwards, while a large value of Xv pushes its weighted
degree up.

Step 2 concentrates around modifications of weights of the edges between B and S,
resulting in relatively small weights’ shifts, attributing pairwise distinct weighted degrees
to all but a small set of “bad vertices” in B. Note that in order to be able to achieve
our goal, we must assure that the (randomly chosen) set S is large enough to guarantee
sufficiently many edges between B and S.

In Step 3 we modify mainly weights of the edges within S (and a small fraction of the
edges outside S) in order to differentiate weighted degrees in S mostly. For this purpose
we associate to these vertices special weighted degrees, which were earlier deliberately not
used within step 2. While distinguishing weighted degrees in S we in particular benefit
from the fact that S is small in comparison to B, and thus vertices in S have on average
large fraction of their incident edges in E(S,B) (statistically much larger than the fraction
of edges in S). This allows taking on essential preparatory measures prior to step 3 (in step
1) assuring sparse weighted degrees’ distribution within S and facilitating the mentioned
final cleanup in this set. Throughout the construction we moreover specify several types
of “bad vertices”, which do not fulfill one of a list of certain conditions and cannot be
distinguished according to major procedures. The aggregated set of these is however small
enough to be taken care of in a special manner within step 3.

3.2 Regular Graphs

In order to provide much shorter proof of more specific results in the case of regular
graphs, i.e. Theorems 4 and 5 (directly referring to Conjecture 1), we use in a way similar
general 3-step approach, exploiting in particular random variables Xv ∼ U [0, 1] associated
with vertices. We however phrase our construction differently, using quantization and the
Lovász Local Lemma, which was redundant in the construction above. This time we may
guarantee that weighted degrees of the vertices in the big set B are arranged very tightly,
in fact these form a sequence of |B| consecutive integers. We moreover again benefit from
S being small compared to B, this time by assigning heavy weights between S and B, thus
guaranteeing that weighted degrees of vertices in (the small set) S are all larger than those
in B (as random choice of S and B results, with positive probability, in many edges joining
vertices in S with those in B). Still particular preparatory measures need to be undertaken
within our special initial random vertex and edge partitions, in order to facilitate later final
weighted degrees distinction within S. We refer the reader to [38, 39] for more details of
our randomized constructions.

4 Related Concepts
One of the most well known variants of the irregularity strength is its local correspondent,
within which one confines to requiring distinct weighted degrees only for adjacent vertices.
This concept was introduced in 2004 by Karoński, Łuczak and Thomason [26] together with
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an intriguing conjecture that just weights 1, 2 and 3 are sufficient for every graphs without
isolated edges within such a setting. This so-called 1–2–3 Conjecture swiftly became yet
another central problem of this field, and gained considerable attention, comparable to the
Conjecture of Faudree and Lehel, cf. in particular [1, 2, 6, 7, 9, 14, 25, 26, 27, 28, 36, 37,
40, 41, 42, 43, 44]. In 2021 the 1–2–3 Conjecture was proven to hold for regular graphs
with large enough degrees [36], while in 2022 also for general graphs with minimum degree
δ = Ω(log ∆) [37]. Lately Keusch [28] proved that actually weights 1, 2, 3, 4 always suffice,
whereas very recently the same author announced [27] to finally resolve the conjecture in
the affirmative.

Also recently yet another related concept was proposed by Alon and Wei [4]. Roughly
speaking they posed a conjecture that every graph contains a spanning subgraph which
is (globally) almost as irregular as possible. More precisely they asked if any d-regular
graph on n vertices contains a spanning subgraph in which the number of vertices of each
degree between 0 and d deviates from n

d+1
by at most 2, and similarly, if every graph on n

vertices, not necessarily regular, with minimum degree δ contains a spanning subgraph in
which the number of vertices of each degree does not exceed n

δ+1
+ 2. They also supported

the conjectures by showing in particular that if d3 log n ≤ o(n) then every d-regular graph
with n vertices contains a spanning subgraph in which the number of vertices of each degree
between 0 and d is (1 + o(1)) n

d+1
, and a similar result for general graphs. Some of these

results were also later significantly strengthened by Fox, Luo and Pham [19].
The mentioned problems are just the tip of the iceberg of related concepts. An extensive

list of other related issues can in particular be found in Gallian’s survey [21].
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