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Abstract

In 1995, Komlós, Sárközy and Szemerédi showed that for large n, every n-vertex
graph with minimum degree at least (1/2+γ)n contains all spanning trees of bounded
degree. We consider a generalization of this result to loose spanning hypertrees, that
is, linear hypergraphs obtained by successively appending edges sharing a single ver-
tex with a previous edge, in 3-graphs. We show that for all γ and ∆, and n large,
every n-vertex 3-uniform hypergraph of minimum vertex degree (5/9+γ)

(
n
2

)
contains

every loose spanning tree with maximum vertex degree ∆. This bound is asymptoti-
cally tight, since some loose trees contain perfect matchings.
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1 Introduction
A classical result of Komlós, Sárközy and Szemerédi [4] states that for large n, any n-vertex
graph with minimum degree (1/2 + ε)n contains every spanning tree of bounded degree.
Since a Hamilton path is a tree of bounded degree, the constant 1/2 is best possible by
any construction showing that Dirac’s theorem is best possible.
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Figure 1: The complete binary loose tree with 4 levels. A perfect matching is shown in
red.

We consider the corresponding problem for hypergraphs. We work with a combinatorial
definition of a k-uniform `-tree – a k-uniform hypergraph admitting an edge ordering
e1, ..., em such that each ei shares ` vertices with one previous edge in the ordering1. Such
orderings we call valid, and the edges which can be last in a valid ordering we call leaves.
We will call 1-trees loose (also known in the literature as linear). Similarly, a (k − 1)-tree
is also called a tight tree. We denote by δ`(H) the minimum `-degree of a k-graph H, that
is, the minimum number of edges containing a set of ` vertices of H. Maximum degree is
defined accordingly.

Not much is known about extensions of Komlós, Sárközy and Szemerédi’s result to
general k-uniform `-trees, apart from a recent result of Pavez-Signé, Sanhueza-Matamala
and Stein [5, 6] which shows that minimum δk−1(H) > (1/2 + γ)n forces the existence of
any tight spanning tree T with ∆1(T ) 6 ∆.

Buß, Hàn and Schacht [1] showed that if δ1(H) >
(

7
16

+ ε
) (

n
2

)
, then H contains a loose

Hamilton cycle – a cycle whose adjacent edges share exactly one vertex. The constant 7/16
is best possible, and in a later paper Han and Zhao [3] gave the exact threshold.

In light of this, one may conjecture that 3-graphs with minimum vertex degree
(

7
16

+ ε
) (

n
2

)
also contain every loose tree of bounded degree. However, this is not the case. Consider
the complete binary loose tree as shown in Figure 1. A complete binary loose tree Tb with
an even number of levels contains a perfect matching, so any 3-graph without a perfect
matching will also not contain Tb. The asymptotic minimum degree threshold for perfect
matchings in 3-graphs was shown to be 5/9 by Hàn, Person and Schacht [2]. Their asymp-
totic bound was later made exact by Treglown, Kühn and Osthus [8]. This is tight as
witnessed by the hypergraph on vertex set A ∪ B with |A| = n/3− 1 and |B| = 2n/3 + 1
consisting of all edges with at least one vertex in A. Therefore, the minimum vertex degree
threshold for the existence of bounded degree loose spanning trees must be at least 5/9.
We show that this is in fact the correct threshold.

Theorem 1.1. For all γ > 0 and ∆ ∈ N there exists n0 ∈ N such that any 3-graph H on
n > n0 vertices with n odd and δ1(H) >

(
5
9

+ γ
) (

n
2

)
contains every n-vertex loose tree T

with ∆1(T ) 6 ∆.
1More formally, for each i > 2 there exists j < i such that ei ∩

⋃
j′<i ej′ ⊆ ej and |ei ∩ ej | = `.
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2 Proof of Theorem 1.1
Our proof employs a classic recipe prescribed by the absorbing method.

Step 1. Find an absorbing set A in our host graph. In Absorbing set lemma we show
existence and in Absorbing lemma we show its absorbing properties.

Step 2. Embed a small proportion of our tree T in a way that covers the relevant vertices
of A. This is Covering lemma.

Step 3. Use the regularity method to extend this embedding to almost all of T . This is
Approximate embedding lemma.

Step 4. Use A to extend the embedding to all of T .

As an expansion of this sketch we give statements and proof ideas of the four lemmas
used above, and show how they imply Theorem 1.1.

The proof of the following lemma is analogous to [6, Proposition 9.4 and Lemma 9.5].
It uses the fact that in a graph with minimum vertex degree

(
1
2

+ o(1)
) (

n
2

)
every triple of

vertices (w1, w2, w3) has a positive density of absorbing pairs of ∆-stars (see Figure 2). We
denote the set of such star-pairs by A∆(w1, w2, w3). Subsampling these over all triples of
vertices with the appropriate probability gives a large absorbing set.

Absorbing set lemma. Let 1/n � α � β � γ, 1/∆. Let H be a 3-graph on n ver-
tices with δ1(H) >

(
1
2

+ γ
) (

n
2

)
. Then there exists a set A of at most βn vertex-disjoint

pairs of ∆-stars such that for every triple (w1, w2, w3) of distinct vertices in H we have
|A∆(w1, w2, w3) ∩ A| ≥ αn.

The following lemma shows that the set A in fact absorbs – given a partial embedding
of a tree which covers A, we can use A to find a full embedding. Intuitively, this is possible
because given a triple (w1, w2, w3) and one of its absorbing star-pairs (Su2 , Su3), we can
add the edge {w1, u2, u3} to the partial embedding by switching u2 for w2 and u3 for w3

(see Figure 2). Repeating this switch enough times gives a full embedding of T .

Absorbing lemma. Let 1/n � η < α < 1/∆. Let T be a loose 3-tree on n vertices
of maximum degree ∆ with a valid ordering of the edges e1, . . . , e(n−1)/2 and let T0 =
{e1, . . . , e(n′−1)/2} be a subtree of T on n′ ≥ (1 − η)n vertices. Let H be a 3-graph on n
vertices, and φ be an embedding φ : V (T0)→ V (H). Suppose A is a family of vertex-disjoint
pairs of ∆-stars such that every tuple in A is covered by φ and |A∆(w1, w2, w3) ∩A| ≥ αn
for every triple (w1, w2, w3) of distinct vertices of H. Then there is an embedding of T into
H.

The proof of the following covering lemma is analogous to [6, Lemma 9.7].

Covering lemma. Let 1/n � β � ν � γ, 1/∆. Let H be a 3-graph on n vertices with
minimum degree

(
1
2

+ γ
) (

n
2

)
and let T be a loose tree on νn vertices with maximum degree
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Figure 2: A pair (Sv2 , Sv3) of 3-stars which is absorbing for (w1, w2, w3) and covered by an
embedding φ. Images of edges under φ are shown in green. The crucial property of this
structure is that the two green stars in φ can be switched for the two orange stars plus an
extra edge at w1, thus extending the embedding.

∆. Let A be a set of at most βn pairwise vertex-disjoint absorbing star-pairs in H. Then
there is an embedding φ : V (T ) → V (H) such that every absorbing tuple in A is covered
by φ.

In the following lemma we show that a bounded-degree tree T of size almost n can be
embedded in our host graph H. To prove this, we first apply the weak regularity lemma to
H to obtain an ε-regular partition of H. The cluster graph inherits the minimum degree
of H, and so by the main result in [7] it contains a tight Hamilton cycle C = (V1, ..., Vt).
The properties of the regular partition give an embedding of T as long as we can produce
what we call a valid assignment a : V (T )→ [t] of its vertices to the clusters of C. A valid
assignment satisfies the following two properties:

• the total number of vertices assigned to each Vj does not exceed (1 − η)|Vj|, where
η � ε,

• all edges of T are assigned to edges of C.

Our key idea for finding a valid assignment is to break down the almost-spanning tree into
linear-sized pieces, assign these pieces to different edges of C, and then ‘wrap’ around the
tight Hamilton cycle C to connect the pieces to each other. When assigning a piece of
our tree to an edge of C, we always make sure to leave approximately the same number
of vertices unused in each cluster of that edge of C, so that there is always at least one
edge with the capacity to assign an extra piece to it. Since C has constantly many edges,
wrapping around it to connect the pieces only uses up constantly many vertices and so
does not interfere with our balance invariant.

Approximate embedding lemma. Let 1/n� η � γ, 1/∆, and let H be a 3-graph on n
vertices with δ1(H) ≥

(
5
9

+ γ
) (

n
2

)
. Let T be a loose tree of maximum degree ∆ on at least

(1− η)n vertices. Then for every x ∈ V (T ) and z ∈ V (H), there exists an embedding of T
into H that maps x to z.
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We are now ready to put these five lemmas together to prove our main result.

Proof of Theorem 1.1. Let 1/n� η < α� β � ν � γ, 1/∆, where n is odd.
We first apply Absorbing set lemma to get a set A of at most βn pairwise vertex-

disjoint pairs of stars, such that for every triple (w1, w2, w3) of vertices in H we have that
|A∆(w1, w2, w3) ∩ A| ≥ αn.

Next, root T arbitrarily at some vertex r and find a subtree Tx ⊂ T of size νn 6
v(Tx) 6 2∆νn. This can be done by setting x := r and, until x has a child y whose
subtree has at least νn vertices, set x := y. At some point this process reaches a vertex
x whose subtree Tx has at least νn vertices, but all its children’s subtrees have fewer than
νn vertices, implying that v(Tx) 6 2∆νn. Let ν ′ := v(Tx)/n and apply Covering lemma
with ν := ν ′ and T := Tx to find an embedding φ1 : V (Tx) → V (H) such that every pair
of stars in A is covered by φ1. Denote φ1(x) = z.

Now let H1 := (H \ φ1(Tx)) ∪ {z} and note that δ1(H1) ≥
(

5
9

+ γ
2

) (|H1|
2

)
. Let T1 :=

(T \ Tx)∪ {x} and root T1 at x. Remove leaf edges from T1 repeatedly to get T2 such that
v(T1)− v(T2) = η|H1|. Apply Approximate embedding lemma with H := H1 and T := T2

to find an embedding φ2 of T2 into H1 with φ2(x) = z.
Finally, let T3 := Tx∪T2 and note that v(T3) = n−η|H1| > (1−η)n. Combine φ1 and φ2

into an embedding φ3 of T3 intoH, which can be done since φ1(Tx)∩φ2(T2) = φ1(x) = φ2(x).
Then the tree T3, the embedding φ3, and the set of absorbing tuplesA satisfy the conditions
of Absorbing lemma, which we can apply to get an embedding of T in H.
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