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Abstract
For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all

k-element subsets of an n-element ground set, and an edge between any two disjoint
sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton
cycle, with one notable exception, namely the Petersen graph K(5, 2). This problem
received considerable attention in the literature, including a recent solution for the
sparsest case n = 2k + 1. The main contribution of this paper is to prove the con-
jecture in full generality. We also extend this Hamiltonicity result to all connected
generalized Johnson graphs (except the Petersen graph). The generalized Johnson
graph J(n, k, s) has as vertices all k-element subsets of an n-element ground set,
and an edge between any two sets whose intersection has size exactly s. Clearly, we
have K(n, k) = J(n, k, 0), i.e., generalized Johnson graph include Kneser graphs as
a special case. Our results imply that all known families of vertex-transitive graphs
defined by intersecting set systems have a Hamilton cycle, which settles an interest-
ing special case of Lovász’ conjecture on Hamilton cycles in vertex-transitive graphs
from 1970. Our main technical innovation is to study cycles in Kneser graphs by a
kinetic system of multiple gliders that move at different speeds and that interact over
time, reminiscent of the gliders in Conway’s Game of Life, and to analyze this system
combinatorially and via linear algebra.
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1 Introduction

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all k-element
subsets of [n] := {1, 2, . . . , n}, and an edge between any two sets A and B that are disjoint,
i.e., A ∩ B = ∅. Kneser graphs were introduced by Lovász [Lov78] in his celebrated proof
of Kneser’s conjecture. Using the Borsuk-Ulam theorem, he proved that the chromatic
number of K(n, k) equals n − 2k + 2. Observe also that the maximum independent set
in K(n, k) has size

(
n−1
k−1

)
by the famous Erdős-Ko-Rado [EKR61] theorem. Furthermore,

the graph K(n, k) is vertex-transitive, i.e., it ‘looks the same’ from the point of view of
any vertex, and all vertices have degree

(
n−k
k

)
. Lastly, note that when n < ck, the Kneser

graph K(n, k) does not contain cliques of size c, whereas it does contain such cliques
when n ≥ ck.

2 Hamilton cycles in Kneser graphs

In this work we investigate Hamilton cycles in Kneser graphs, i.e., cycles that visit every
vertex exactly once. Kneser graphs have long been conjectured to have a Hamilton cycle,
with one notable exception, the Petersen graph K(5, 2), which only admits a Hamilton
path. As Kneser graphs are vertex-transitive, this is a special case of Lovász’ famous
conjecture [Lov70], which asserts that every connected vertex-transitive graph admits a
Hamilton path. So far, the conjecture for Hamilton cycles in Kneser graphs has been
tackled from two angles, namely for sufficiently dense Kneser graphs, and for the sparsest
Kneser graphs. From the aforementioned results about the degree and cliques in K(n, k),
we see that K(n, k) is relatively dense when n is large w.r.t. k, and relatively sparse
otherwise. The sparsest case is when n = 2k + 1, and the graphs Ok := K(2k + 1, k) are
also known as odd graphs. Intuitively, proving Hamiltonicity should be easier for the dense
cases, and harder for the sparse cases.

We first recap the known results for dense Kneser graphs. Heinrich and Wallis [HW78]
showed that K(n, k) has a Hamilton cycle if n ≥ 2k+k/( k

√
2−1) = (1+o(1))k2/ ln 2. This

was improved by B. Chen and Lih [CL87], whose results imply that K(n, k) has a Hamilton
cycle if n ≥ (1 + o(1))k2/ log k; see [CI96]. In another breakthrough, Y. Chen [Che00]
showed that K(n, k) is Hamiltonian when n ≥ 3k. A particularly nice and clean proof
for the cases where n = ck, c ∈ {3, 4, . . .}, was obtained by Y. Chen and Füredi [CF02],
later extended by Bellmann and Schülke to any n ≥ 4k [BS21]. The asymptotically best
result known to date, again due to Y. Chen [Che03], is that K(n, k) has a Hamilton cycle
if n ≥ (3k + 1 +

√
5k2 − 2k + 1)/2 = (1 + o(1))2.618 . . . · k. With the help of computers,

Shields and Savage [SS04] found Hamilton cycles in K(n, k) for all n ≤ 27 (except for the
Petersen graph).

We now briefly summarize the Hamiltonicity story of the sparsest Kneser graphs,
namely the odd graphs. Note that Ok = K(2k + 1, k) has degree k + 1, which is only
logarithmic in the number of vertices. The conjecture that Ok has a Hamilton cycle for
all k ≥ 3 originated in the 1970s, in papers by Meredith and Lloyd [ML72, ML73] and by
Biggs [Big79]. Already Balaban [Bal72] exhibited a Hamilton cycle for the cases k = 3
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and k = 4, and Meredith and Lloyd described one for k = 5 and k = 6. Later,
Mather [Mat76] solved the case k = 7. Mütze, Nummenpalo and Walczak [MNW21]
finally settled the problem for all odd graphs, proving that Ok has a Hamilton cycle for
every k ≥ 3. Already much earlier, Johnson [Joh11] provided an inductive argument
that establishes Hamiltonicity of K(n, k) provided that the existence of Hamilton cycles is
known for several smaller Kneser graphs. Combining his result with the unconditional re-
sults from [MNW21] yields that K(2k+2a, k) has a Hamilton cycle for all k ≥ 3 and a ≥ 0.
These results still leave infinitely many open cases, the sparsest one of which is the fam-
ily K(2k + 3, k) for k ≥ 1.

The main contribution of this paper is to settle the conjecture on Hamilton cycles in
Kneser graphs affirmatively in full generality.

Theorem 1. For all k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has a Hamilton
cycle, unless it is the Petersen graph, i.e., (n, k) = (5, 2).

More generally, our work settles all known instances of Lovász’ conjecture for vertex-
transitive graphs defined by intersecting set systems. As we shall see, Kneser graphs are
the hardest cases among them to prove, i.e., with the help of Theorem 1 the Hamiltonicity
of the more general families of graphs can be settled easily.

3 Generalized Johnson graphs

The generalized Johnson graph J(n, k, s) has as vertices all k-element subsets of [n], and
an edge between any two sets A and B that satisfy |A ∩B| = s, i.e., the intersection of A
and B has size exactly s. To ensure that the graph is connected, we assume that s < k and
n ≥ 2k− s+1[s=0], where 1[s=0] denotes the indicator function that equals 1 if s = 0 and 0
otherwise. Generalized Johnson graphs are sometimes called ‘uniform subset graphs’ in
the literature, and they are also vertex-transitive. Furthermore, by taking complements,
we see that J(n, k, s) is isomorphic to J(n, n− k, n− 2k + s). Clearly, Kneser graphs are
special generalized Johnson graphs obtained for s = 0. On the other hand, the graphs
obtained for s = k − 1 are known as (ordinary) Johnson graphs J(n, k) := J(n, k, k − 1).

Chen and Lih [CL87] conjectured that all graphs J(n, k, s) admit a Hamilton cycle
except the Petersen graph J(5, 2, 0) = J(5, 3, 1), and this problem was reiterated in Gould’s
survey [Gou91]. In their original paper, Chen and Lih settled the cases s ∈ {k − 1, k −
2, k− 3}. For the Johnson graphs J(n, k) = J(n, k, k− 1), strong Hamiltonicity properties
are known [TL73, JR94, Kno94].

We generalize Theorem 1 further, by showing that all connected generalized Johnson
graphs admit a Hamilton cycle. This resolves Chen and Lih’s conjecture affirmatively in
full generality.

Theorem 2. For all k ≥ 1, 0 ≤ s < k, and n ≥ 2k − s + 1[s=0] the generalized Johnson
graph J(n, k, s) has a Hamilton cycle, unless it is the Petersen graph, i.e., (n, k, s) ∈
{(5, 2, 0), (5, 3, 1)}.



Kneser graphs are Hamiltonian 734

4 Bipartite Kneser graphs and the middle levels problem

For integers k ≥ 1 and n ≥ 2k + 1, the bipartite Kneser graph H(n, k) has as vertices all
k-element and (n− k)-element subsets of [n], and an edge between any two sets A and B
that satisfy A ⊆ B. It is easy to see that bipartite Kneser graphs are also vertex-transitive.
As H(n, k) is the bipartite double cover of K(n, k), Hamiltonicity of K(n, k) is harder than
the Hamiltonicity of H(n, k).

Lemma 3. If K(n, k) admits a Hamilton cycle, then H(n, k) admits a Hamilton cycle or
path.

The sparsest bipartite Kneser graphs Mk := H(2k + 1, k) are known as middle levels
graphs, as they are isomorphic to the subgraph of the (2k + 1)-dimensional hypercube in-
duced by the middle two levels. The well-known middle levels conjecture asserts that Mk

has a Hamilton cycle for all k ≥ 1. This conjecture was raised in the 1980s, settled affir-
matively in [Müt16], and a short proof was given in [GMN18]. More generally, all bipartite
Kneser graphs H(n, k) were shown to have a Hamilton cycle in [MS17]. Via Lemma 3,
our Theorem 1 thus also yields a new alternative proof for the Hamiltonicity of bipartite
Kneser graphs. Consequently, our results in this paper settle Lovász’ conjecture for all
known families of vertex-transitive graphs that are defined by intersecting set systems.

5 Proof ideas

It turns out that Theorem 1 can be used to establish Theorem 2 by a simple inductive
construction. Consequently, the main work in this paper is to prove Theorem 1. In this
extended abstract, we only sketch the main ideas for this proof, for details see [MMN22].

As mentioned before, Mütze, Nummenpalo and Walczak [MNW21] proved that K(n, k)
has a Hamilton cycle for n = 2k + 1 and all k ≥ 3. Combining this result with Johnson’s
construction [Joh11] shows that K(n, k) has a Hamilton cycle for n = 2k+2a and all k ≥ 3
and a ≥ 0, in particular for n = 2k + 2. The techniques developed in this paper work
whenever n ≥ 2k + 3, and thus they settle all remaining cases of Theorem 1. Our proof
does not work in the cases n = 2k + 1 and n = 2k + 2, so the two earlier constructions do
not become obsolete.

We follow a two-step approach to construct a Hamilton cycle in K(n, k) for n ≥ 2k+ 3.
In the first step, we construct a cycle factor in the graph, i.e., a collection of disjoint cycles
that together visit all vertices. In the second step, we join the cycles of the factor to a
single cycle.

5.1 Cycle factor construction

The starting point is to consider the characteristic vectors of the vertices of K(n, k). For
every k-element subset of [n], this is a bitstring of length n with exactly k many 1s at
the positions corresponding to the elements of the set. For example, the vertex {1, 7, 9}
of K(9, 3) is represented by the bitstring 100000101. Clearly, two sets A and B that are
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vertices of K(n, k) are disjoint if and only if the corresponding bitstrings have no 1s at the
same positions.

Our construction of a cycle factor in the Kneser graph K(n, k) uses the following simple
rule based on parenthesis matching, a technique pioneered by Greene and Kleitman [GK76]:
Given a vertex represented by a bitstring x, we interpret the 1s in x as opening brackets
and the 0s as closing brackets, and we match closest pairs of opening and closing brackets
in the natural way, which will leave some 0s unmatched. This matching is done cyclically
across the boundary of x, i.e., x is considered as a cyclic string. We write f(x) for the
vertex obtained from x by complementing all matched bits, leaving the unmatched bits
unchanged. For example, x = 100000101 is interpreted as x = ()))))()( = ())---()(, where
each - denotes an unmatched closing bracket, and then complementing matched bits (the
first three and last three in this case) yields the vertex f(x) = 011000010. Repeatedly ap-
plying f to every vertex partitions the vertices of the Kneser graph into cycles, and we write
C(x) := (x, f(x), f 2(x), . . .) for the cycle containing x. For example, for x from before we
obtain C(x) = (100000101, 011000010, 000110001, 100001100, 010000011, . . . , 000011010).
Figure 1 shows several more examples of cycles generated by this parenthesis matching
rule.

5.2 Analysis via gliders

The next key step is to understand the structure of the cycles generated by f . We describe
the evolution of a bitstring x under repeated applications of f by a kinetic system of
multiple gliders that move at different speeds and that interact over time, reminiscent of
the gliders in Conway’s Game of Life. This physical interpretation and its analysis are one
of the main innovations of this paper. Specifically, we view each application of f as one unit
of time moving forward. Furthermore, we partition the matched bits of x into groups, and
each of these groups is called a glider. A glider has a speed associated to it, which is given
by the number of 1s in its group. For example, in the cycle shown in Figure 1 (a), there is
a single matched 1 and the corresponding matched 0, and together these two bits form a
glider of speed 1 that moves one step to the right in every time step. Applying f means
going down to the next row in the picture, so the time axis points downwards. Similarly, in
Figure 1 (b), there are two matched 1s and the corresponding two matched 0s, and together
these four bits form a glider of speed 2 that moves two steps to the right in every time
step. As we see from these examples, a single glider of speed v simply moves uniformly,
following the basic physics law s(t) = s(0) + v · t, where t is the time (i.e., the number of
applications of f) and s(t) is the position of the glider in the bitstring as a function of time
(modulo n). The situation gets more interesting and complicated when gliders of different
speeds interact with each other. For example, in Figure 1 (c), there is one glider of speed 2
and one glider of speed 1. As long as these groups of bits are separated, each glider moves
uniformly as before. However, when the speed 2 glider catches up with the speed 1 glider,
an overtaking occurs. During an overtaking, the faster glider receives a boost, whereas the
slower glider is delayed. This can be captured by augmenting the corresponding equations
of motion by introducing an additional term that involves a variable counting the number of
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overtakings, making the equations non-uniform. For more than two gliders, the equations
of motion can be generalized accordingly, by introducing such overtaking counters between
any pair of gliders. Nevertheless, as the reader may appreciate from Figure 1 (d), in general
it is highly nontrivial to recognize from an arbitrary bitstring x which of its matched bits
belong to which glider, and consequently which glider is currently overtaking which other
glider. Note that in general the gliders will not be nicely separated, but will be involved in
simultaneous interactions, so that the groups of bits forming the gliders will be interleaved
in complicated ways.

From the aforementioned physics interpretation we obtain that the number of gliders
and their speeds are invariant along each cycle. For example, in Figure 1 (d), every bitstring
along this cycle has three gliders of speeds 1, 2 and 3. From the equations of motion we
also derive another crucial property, namely that no glider stands still forever, but will
move eventually. Note that the speed 1 glider in Figure 1 (d) stands still between time

x = 1 0 -
C(x)

(a)

x = 1 0 0 -
C(x)

(b)
-1

x = 1 0 0 0 -
C(x)

...

(c)
-1 1-- - ------ ----

- - - -- -- --

- - - -- -

x = 1 0 0 0
C(x)

...

(d)
-1 1- - 1 0 01 01

f

f

f

f

(n, k) = (15, 1)

(n, k) = (15, 2)

(n, k) = (15, 3)

(n, k) = (15, 6)

speed 1
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speed 1speed 2

speed 1speed 2 speed 3
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e
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Figure 1: Cycles of our factor in different Kneser graphs K(n, k). The cycles in (a) and (b)
are shown completely, whereas in (c) and (d) only the first 15 vertices are shown. Vertices
are represented by characteristic vectors, with 1s and 0s shown as black and white squares,
resp. In each pair of figures, the right hand side shows the interpretation of certain groups
of bits as gliders, and their movement over time. Matched bits belonging to the same
glider are colored in the same color, 1-bits filled opaquely, and 0-bits filled transparently.
(a) one glider of speed 1; (b) one glider of speed 2; (c) two gliders with speeds 1 and 2
that participate in an overtaking; (d) three gliders of speeds 1, 2 and 3 that participate in
multiple overtakings. Animations of these examples are available at [Müt23].
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steps 2–8, as during those steps it is overtaken once by the speed 2 glider, and twice by the
speed 3 glider (wrapping around the boundary). We establish this fact by linear algebra,
by showing that the determinant of the linear systems of equations that governs the gliders’
movements is non-singular.

For the reader’s entertainment, we programmed an interactive animation of gliders over
time, and we encourage experimentation with this code, which can be found at [Müt23].

5.3 Gluing the cycles together

To join the cycles of our factor to a single Hamilton cycle, we consider a 4-cycle D that
shares two opposite edges with two cycles C,C ′ from our factor. Clearly, the symmetric
difference of the edge sets (C∪C ′)∆D yields a single cycle on the same vertex set as C∪C ′.
We may repeatedly apply such gluing operations until all cycles are joined to a single
Hamilton cycle. The two main technical obstacles here are: (a) All of the 4-cycles used
for the gluing must be edge-disjoint, so that none of the gluings interfere with each other.
(b) The gluings must achieve connectivity, i.e., every cycle must be connected to every
other cycle via a sequence of gluings. To control the gluing, we consider the speeds of
gliders in a bitstring x in non-increasing order. As the sum of speeds equals k, this
sequence forms a number partition of k. To establish (b) we choose gluings that guarantee
a lexicographic increase in those number partitions. Specifically, we glue cycles C(x)
and C(y) for which the glider speeds in y are obtained from those in x by decreasing the
speed of a glider of minimum speed by 1, and by increasing the speed of another glider by 1.
This ensures that the number partition of k associated with y is lexicographically larger
than that of x. Unfortunately, it is not always possible to use gluings that guarantee such
immediate lexicographic improvement. In some cases we have to use gluings where a small
lexicographic decrease occurs. We then argue that subsequent gluings compensate for this
defect such that the overall effect is again a lexicographic improvement. For example, from
a vertex with associated number partition (4, 4), the first gluing may lead to a vertex with
number partition (4, 3, 1), and the next gluing may lead to (5, 3). While (4, 4) → (4, 3, 1)
is a lexicographic decrease instead of an increase, overall (4, 4) → (4, 3, 1) → (5, 3) is a
lexicographic increase.
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