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Abstract

For a given graph H, we say that a graph G has a perfect H-subdivision tiling
if G contains a collection of vertex-disjoint subdivisions of H covering all vertices of
G. Let δsub(n,H) be the smallest integer k such that any n-vertex graph G with
minimum degree at least k has a perfect H-subdivision tiling. For every graph
H, we asymptotically determined the value of δsub(n,H). More precisely, for ev-
ery graph H with at least one edge, there is a constant 1 < ξ∗(H) ≤ 2 such that
δsub(n,H) =

(
1− 1

ξ∗(H) + o(1)
)
n if H has a bipartite subdivision with two parts

having different parities. Otherwise, the threshold may depend on the parity of n.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-098

1 Introduction
Embedding a large sparse subgraph into a dense graph is one of the most central problems
in extremal graph theory. It is well-known that any graph G with minimum degree at least
⌊v(G)

2
⌋ has a Hamiltonian cycle, hence also a perfect matching if the number of vertices

v(G) of G is even. A natural generalization of a perfect matching is a perfect H-tiling,
for a general graph H. We say G has a perfect H-tiling if G contains a collection of
vertex-disjoint copies of H, whose union covers all vertices of G. For a positive integer n
divisible by v(H), we denote by δ(n,H) the minimum integer k such that any n-vertex
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graph G with minimum degree at least k has a perfect H-tiling. For any integer r ≥ 2, the
Hajnal-Szemerédi [11] theorem states that the number δ(n,Kr) is equal to

(
1− 1

r

)
n.

The minimum degree threshold of perfect tiling for general graph H was first proved
by Alon and Yuster [2]. They showed that if n is divisible by v(H), then δ(n,H) ≤(
1− 1

χ(H)

)
n + o(n), where χ(H) is a chromatic number of H. Komlós, Sárközy, and Sze-

merédi [18] improved the o(n) term in Alon-Yuster theorem to some constant C = C(H),
which settled the conjecture of Alon and Yuster [2]. Another direction for an asymptotic
extension of Hajnal-Szemerédi theorem was proved by Komlós [17]. We write the critical
chromatic number of H as χcr(H), which is defined as χcr(H) = (χ(H)−1)v(H)

v(H)−σ(H)
, where σ(H)

is the minimum possible size of color class in the optimal proper coloring of H. Komlós
showed that for any γ > 0, there exists n0 = n0(γ,H) such that if n ≥ n0, then for any
n-vertex graph G whose minimum degree is at least

(
1− 1

χcr(H)

)
n contains an H-tiling

which covers at least (1 − γ)n vertices of G. Komlós [17] conjectured that the number
of uncovered vertices can be reduced to a constant and this conjecture was confirmed by
Shokoufandeh and Zhao [30]. More precisely, the following holds.

Theorem 1.1 (Shokoufandeh and Zhao [30]). Let H be a graph. Then there exists a
constant C = C(H), which only depends on H such that any graph G on n-vertices with
minimum degree at least

(
1− 1

χcr(H)

)
n contains a H-tiling which covers all but at most C

vertices of G.

The almost exact value of δ(n,H) for every graph H was determined by Kühn and
Osthus [23] up to an additive constant depending only on H.

Theorem 1.2 (Kühn and Osthus [23]). Let H be a graph and n be a positive integer which
divisible by v(H). Then there exist a constant C = C(H) and χ(H)− 1 < χ∗(H) ≤ χ(H)
depending only on H such that(

1− 1

χ∗(H)

)
n− 1 ≤ δ(n,H) ≤

(
1− 1

χ∗(H)

)
n+ C.

Indeed, in [23], the authors stated how we can compute χ∗(H) for a given graph H.

1.1 Main results

Motivated by the Kühn-Osthus theorem on perfect H-tilings, several variations of Theo-
rem 1.2 were considered. For instances, see [5, 10, 12, 13, 14, 22, 26].

We consider a problem related to the concept of perfect H-tilings and subdivision
embeddings. Consider graphs G and H. We say for a graph H ′ is a subdivision of H if
H ′ is obtained from H by replacing edges of H to vertex-disjoint paths. Let H and G be
graphs. An H-subdivision tiling is a collection of disjoint union of subdivisions of H. We
say that G has a perfect H-subdivision tiling if G has an H-subdivision tiling which covers
all vertices of G. A natural question would be to determine the minimum degree threshold
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which ensures the existence of perfect H-subdivision tiling in any n-vertex graph G. We
define this minimum degree threshold as the following.

Definition 1.3. Let H be a graph. We denote the minimum degree threshold for perfect
H-subdivision tilings by δsub(n,H), which is the smallest integer k such that any n-vertex
graph G with minimum degree at least k has a perfect H-subdivision tiling.

If H has no edges, then perfect H-subdivision tiling exists if and only if v(G) is divisible
by v(H), regardless of the minimum degree δ(G) of G. Thus, from now on, we only consider
graphs with at least one edge.

Since embedding bipartite graphs generally requires less minimum degree than non-
bipartite graphs, we want to cover most of the vertices of the host graph with subdivisions
of H that are bipartite. Suppose every bipartite subdivision of H is in some sense balanced.
In that case, one cannot perfectly tile them in a highly unbalanced complete bipartite graph
which has a smaller minimum degree than a balanced complete bipartite graph. For this
reason, we need to measure how unbalanced bipartite subdivisions of H can be, as it poses
some space barriers on the problem.

For this purpose, we introduce the following two definitions.

Definition 1.4. Let H be a graph and X ⊆ V (H). We define a function fH : 2V (H) → R
as fH(X) = v(H)+e(H[X])+e(H[Y ])

|X|+e(H[Y ])
where Y = V (H) \X.

Definition 1.5. Let H be a graph. We define ξ(H) := min{fH(X) : X ⊆ V (H)}.

Note that we always have 1 < ξ(H) ≤ 2. Another crucial factor for perfect subdivision
tiling problem is the divisibility issue. Assume that all bipartite subdivisions of H have
bipartitions with both parts having the same parity. If G is a complete bipartite graph
Ka,b with a, b having different parities, then we cannot find a perfect H-subdivision tiling
in G, as it poses some divisibility barriers on the problem. Hence, we need to introduce
the following definitions concerning the difference between two parts in bipartitions of
subdivisions of H and their highest common factor.

Definition 1.6. Let H be a graph. We define C(H) := {(|X|+e(H[Y ]))−(|Y |+e(H[X])) :
X ⊆ V (H), Y = V (H) \ X}. We denote by hcfξ(H) the highest common factor of all
integers in C(H). (If C(H) = {0}, we define hcfξ(H) = ∞.)

By considering the space and divisibility barriers, we introduce the following parameter
measuring both obstacles for the problem. We will show that this is the determining factor
for δsub(n,H).

Definition 1.7. Let H be a graph. We define

ξ∗(H) :=


ξ(H) if hcfξ(H) = 1,

max{3
2
, ξ(H)} if hcfξ(H) = 2,

2 otherwise.
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We are now ready to state our main theorems. The following theorem gives an asymp-
totically exact value for δsub(n,H) except only one case, that is when hcfξ(H) = 2.

Theorem 1.8. Let H be a graph with hcfξ(H) ̸= 2. For every γ > 0, there exists an
integer n0 = n0(γ,H) such that the following holds. For every integer n ≥ n0,(

1− 1

ξ∗(H)

)
n− 1 ≤ δsub(n,H) ≤

(
1− 1

ξ∗(H)
+ γ

)
n

This theorem asymptotically determine δsub(n,H) as long as hcfξ(H) ̸= 2. If hcfξ(H) =
2, then the parity of n is also important. The following theorem asymptotically determines
δsub(n,H) for this case.

Theorem 1.9. Let H be a graph with hcfξ(H) = 2. For every γ > 0, there exists an
integer n0 = n0(γ,H) such that the following holds. For every integer n ≥ n0,

1

2
n− 1 ≤ δsub(n,H) ≤

(
1

2
+ γ

)
n if n is odd,(

1− 1

ξ∗(H)

)
n− 1 ≤ δsub(n,H) ≤

(
1− 1

ξ∗(H)
+ γ

)
n if n is even.

One consequence of Theorems 1.8 and 1.9 is that the value of δsub(n,Kr) behaves
unpredictably when r is small. Indeed, δsub(n,K2) =

(
1
3
+ o(1)

)
n and for each r ∈ {3, 4, 5},

we have δsub(n,Kr) =
(

2
r+1

+ o(1)
)
n. For the case r = 7, if n is even, we have δsub(n,K7) =(

1
3
+ o(1)

)
n otherwise, we have δsub(n,K7) =

(
1
2
+ o(1)

)
n. Finally, for every r ≥ 8 and r =

6, we have δsub(n,Kr) =
(
1
2
+ o(1)

)
n. This is contrasting to normal H-tiling problem. This

means determining factors for minimum degree thresholds of perfect H-tilings and perfect
H-subdivision tilings are essentially different. Probably, the most interesting difference
between the perfect H-tiling and the perfect H-subdivision tiling is that the monotonicity
does not hold for subdivision tiling. For a perfect tiling, if H2 is a spanning subgraph
of H1, then obviously δ(n,H2) ≤ δ(n,H1). However, for perfect subdivision tiling, this
does not hold in many cases. For example, our results implies δsub(n,K4) =

2
5
n + o(n) <

δsub(n,C4) =
1
2
n+ o(n).

As ξ∗(H) is the determining factor for the minimum degree threshold, it is convenient for
us to specify a bipartite subdivision achieving the value ξ∗(H). We introduce the following
definition.

Definition 1.10. Let H be a graph. We denote by XH a subset of V (H), where fH(XH) =
ξ(H). If there are multiple choices of XH , we fix one choice arbitrarily. We define a graph
H∗ obtained from H by replacing all edges in H[XH ] and H[V (H)\XH ] to paths of length
two.

Note that H∗ is a subdivision of H, which is a bipartite graph and v(H∗) = v(H) +
e(H[XH ]) + e(H[V (H) \XH ]).
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We observe that the inequality ξ(H) ≥ χ∗(H∗) holds. Hence, if hcfξ(H) ≤ 2, we may
use Theorem 1.1 to find an H∗-tiling that covers all but at most constant number of vertices
of G in a graph G with δ(G) ≥

(
1− 1

ξ(H)
+ γ

)
n. In order to cover the leftover vertices,

we use the absorption method. The absorption method was introduced in [28], and since
then, it has been used to solve various crucial problems in extremal combinatorics. The
main difficulty to apply the absorption method in our setting is that in many cases, the
host graph is not sufficiently dense to guarantee that any vertices can be absorbed in the
final step. To overcome this difficulty, we use the regularity lemma and an extremal result
on the domination number to obtain some control over the vertices that can be absorbed.

2 Proof overview

2.1 Lower bounds

It is easy to check that the following observation holds.

Observation 2.1. Let H be a graph and let F be a bipartite subdivision of H with bipar-
tition (A,B). Then |B|

|A| ≤
1

ξ(H)−1
.

This observation allows us to obtain the following proposition, which poses a lower
bound for δsub(n,H) when we do not care about hcfξ(H). Since ξ(H) measures how un-
balanced a bipartition of a subdivision of H can be, if the given host graph is a sufficiently
unbalanced complete bipartite graph, then we cannot perfectly tile it with the subdivisions
of H. Thus, we can deduce the following.

Proposition 2.2. For every integer n > 0 and every graph H, there is an n-vetex graph
G with minimum degree at least ⌊

(
1− 1

ξ(H)

)
n⌋ − 1 such that G does not have a perfect

H-subdivision tiling.

Now we cause the divisibility issue to construct a lower bound example. To obtain the
lower bound in Theorem 1.8 and the first case of Theorem 1.9, we prove that the following
proposition holds.

Proposition 2.3. Let H be a graph with hcfξ(H) ̸= 1. Then for every integer n > 0, there
is an n-vertex graph G with minimum degree at least ⌊n

2
⌋− 1 which does not have a perfect

H-subdivision tiling except for hcfξ(H) = 2 and n is even.

The remaining case is when hcfξ(H) = 2 and n is even. The lower bound of this case
can be obtained from the following.

Proposition 2.4. For every graph H with hcfξ(H) = 2 and for every even number n,
there is an n-vertex graph G with minimum degree at least ⌊1

3
n⌋ − 1 such that G does not

contain a perfect H-subdivision tiling.
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Both the proof of Propositions 2.3 and 2.4 rely on the observation that if the host
graph is a complete bipartite graph with the difference between two bipartitions are not
divisible by hcfξ(H), then there is no perfect H-subdivision tiling. This can be verified by
the definition of hcfξ(H).

2.2 Upper bounds

We now sketch the proof of our main results. We first start with the following observation.

Observation 2.5. δsub(n,H) ≤
(
1
2
+ o(1)

)
n.

Indeed, for every graph H, there is at least one bipartite subdivision of H. By us-
ing Erdős-Stone-Simonovits theorem and Theorem 1.2, we can deduce that δsub(n,H) ≤(
1
2
+ o(1)

)
n. As Propositions 2.2 to 2.4 provides desired lower bounds, Observation 2.5

implies that it suffices to prove the two following lemmas.

Lemma 2.6. Let hcfξ(H) = 1 and n be a sufficiently large number. If δ(G) ≥
(
1− 1

ξ(H)
+ o(1)

)
n,

then G has a perfect H-subdivision tiling.

Lemma 2.7. Let hcf(ξ)(H) = 2 and n be a sufficiently large even number. If δ(G) ≥(
max{1

3
, 1− 1

ξ(H)
}+ o(1)

)
n, then G has a perfect H-subdivision tiling.

In order to prove the above lemmas, we use the absorption method. Since we are
dealing with a subdivision embedding problem, we define our absorber as follows.

Definition 2.8. Let H and G be graphs and take two subsets A ⊆ V (G) and X ⊆ V (G)\A.
We say A is a Sub(H)-absorber for X if the both G[A] and G[A ∪ X] have perfect H-
subdivision tilings. If X = {v}, we say A is a Sub(H)-absorber for v.

For example, we consider an appropriate subdivision of H with an edge xy in it and
add two edges vx and vy to obtain a graph H ′. Then a copy of H ′ ensures that V (H ′)−{v}
is a Sub(H)-absorber for v. In order to establish robust absorption structures, we wish to
collect many vertices that belong to many copies of such graphs H ′. We will ensure this
using the concept of ε-regularity.

The following is the proof outline of Lemmas 2.6 and 2.7. We omit the details of the
argument as we provide them in the full version [25] of the paper.

Step 1: Preprocessing. In order to find many copies of H ′ containing a given vertex v,
we plan to utilize the concept of ε-regularity. For this, we apply the regularity lemma
and use it to obtain many disjoint ε-regular pairs covering almost all vertices. Note
that those ε-regular pairs are allowed to be somewhat asymmetric. By deleting a
small number of vertices, we can further ensure some minimum degree condition on
every ε-regular pair. Let Z be the small set of vertices not covered by the obtained
ε-regular pairs with the minimum degree condition.
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Step 2: Place the absorber. In each regular pair, the ε-regularity and the minimum
degree condition ensure that every vertex v in it belongs to many copies of H ′. Using
this property, we can find a small subset A ⊆ (V (G) \ Z) such that A is Sub(H)-
absorber for any small set X ⊆ V (G) \ (Z ∪ A).

Step 3: Cover almost all vertices. By considering a suitable bipartite subdivision H ′′

of H and applying Erdős-Stone-Simonovits theorem, we find copies of H ′′ disjoint
from A to cover all vertices of Z as well as a small set of additional vertices. Denote
the set of such vertices as W1. As |A∪W1| is small, the remaining graph G\ (A∪W1)
still has almost the same minimum degree as G. By applying Theorem 1.1, we can
find W2 ⊆ V (G) \ (A ∪W1) such that G[W2] has a perfect H-subdivision tiling and
|V (G) \ (A ∪W1 ∪W2)| is small.

Step 4: Absorb the uncovered vertices. Let X = V (G) \ (A ∪W1 ∪W2). Since X is
small, by our choice of A, the set A is Sub(H)-absorber for X. This means G[A∪X]
has a perfect H-subdivision tiling. Since A, W1, W2 and X are vertex-disjoint sets
and A ∪ W1 ∪ W2 ∪ X = V (G), we obtain a perfect H-subdivision tiling of G by
combining G[A ∪X], G[W1] and G[W2].
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