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Abstract

We consider the problem of finding a copy of a rainbow spanning bounded-degree
tree in the uniformly edge-coloured randomly perturbed graph.

Let G0 be an n-vertex graph with minimum degree at least δn, and let T be
a tree on n vertices with maximum degree at most d, where δ ∈ (0, 1) and d ≥ 2
are constants. We show that there exists C = C(δ, d) > 0 such that, with high
probability, if the edges of the union G0 ∪ G(n,C/n) are uniformly coloured with
colours in [n− 1], then there is a rainbow copy of T .

Our result resolves in a strong form a conjecture of Aigner-Horev, Hefetz and
Lahiri.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-090

1 Introduction
Given δ ∈ (0, 1), we define Gδ,n to be the family of graphs on [n] with minimum degree at
least δn, and we let G(n, p) be the binomial random graph on [n] with edge probability
p. One of the central themes in extremal combinatorics is understanding how large δ
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needs to be so that, for each G ∈ Gδ,n, G contains a copy of a given graph. Similarly,
probabilistic combinatorics aims to determine how large p needs to be for a given graph
to appear in G(n, p) with high probability1. As an interpolation between the two graph
models, Bohman Frieze, and Martin [4] introduced the perturbed graph model. For a given
δ ∈ (0, 1), this is defined as G0 ∪G(n, p) where G0 ∈ Gδ,n, i.e. as the n-vertex graph on [n]
whose edge set is the union of the edges of G0 and the edges of G(n, p). Since [4], there
has been a sizeable body of research extending and adapting results from the extremal and
the probabilistic to the perturbed setting.

Another flourishing trend is to investigate the emergence of rainbow structures in uni-
formly edge-coloured graphs. Given an edge-coloured graph G, a subgraph H of G is
rainbow if each edge of H has a distinct colour. A graph G is uniformly coloured in a
set of colours C if each edge of G gets a colour independently and uniformly at random
from C. For example, for G = G(n, ω(1)/n) uniformly coloured in C = [n], Aigner-Horev,
Hefetz and Lahiri [1] showed that with high probability G admits a rainbow copy of any
fixed almost-spanning bounded-degree tree. Other instances of similar problems in random
graphs can be found in [3, 5–7]. Here we consider rainbow spanning bounded-degree trees
in uniformly coloured perturbed graphs.

Theorem 1.1. Let δ ∈ (0, 1) and let d ≥ 2 be a positive integer. Then there exists C > 0
such that the following holds. Let G0 be a graph on n vertices with minimum degree at
least δn. Suppose that T is a tree on n vertices with maximum degree at most d, and
that G ∼ G0 ∪G(n,C/n) is uniformly coloured in [n− 1]. Then, with high probability, G
contains a rainbow copy of T .

Theorem 1.1 provides a rainbow variant of a result of Krivelevich, Kwan and Su-
dakov [12], who showed that, under the same assumptions, with high probability, G0 ∪
G(n,C/n) contains a copy of T .

Aigner-Horev, Hefetz and Lahiri [1] already considered the question of embedding rain-
bow spanning trees in uniformly coloured perturbed graphs, and they proved that the
same conclusion holds when the edges are uniformly coloured with (1 + ε)n colours (for an
arbitrary constant ε) and C/n is replaced by ω(1)/n. Moreover, Theorem 1.1 proves in a
strong form Conjecture 1.4 of [1].

In the next section, Section 2, we consider the problem of finding rainbow almost-
spanning bounded-degree trees in uniformly coloured random graphs. In Section 3, we
sketch how to prove our main result.

2 Almost-spanning rainbow trees in random graphs
The first ingredient in our proof is Theorem 2.1, which says that we can embed almost-
spanning trees with bounded degree in a rainbow fashion in random subgraphs of uniformly
coloured pseudorandom graphs. The reason we need to consider random subgraphs of

1 Formally, we say that a sequence of events (An)n∈N holds with high probability if P[An]→ 1 as n→∞.
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pseudorandom graphs, as opposed to standard random graphs, is explained in Section 3.1.
We do not define what we mean by pseudorandom here.

For p ∈ [0, 1], the p-random subgraph of a graph G, denoted by Gp, is the random graph
resulting from sampling each edge of G independently with probability p.

Theorem 2.1. Let ε ∈ (0, 1) and let d ≥ 2 be a positive integer. Then there exists C > 0
such that the following holds. Let T be a tree on (1 − ε)n vertices, with maximum degree
d, let G be a pseudorandom graph on n vertices, and write p = C/n. Suppose that Gp is
coloured uniformly in [n]. Then, with high probability, Gp contains a rainbow copy of T .

Theorem 2.1 resolves Conjecture 1.2 of [1].
The proof of Theorem 2.1 uses two previous results. The first, due to Alon, Krivelevich

and Sudakov [2, Thm. 1.4], says that sparse expander graphs contain a copy of every
almost-spanning bounded-degree tree. Because with p ≥ C/n, for a large constant C > 0,
in the p-random subgraph of a pseudorandom graph sufficiently large subsets of vertices
expand, this result from [2] implies the uncoloured version of Theorem 2.1.

The second result we use is a simple consequence of a general result of Ferber and
Krivelevich [6, Thm. 1.2] for binomial random subgraphs of uniformly edge-coloured hy-
pergraphs. This allows us to deduce Theorem 2.1 from its uncoloured version.

Theorem 2.2 (Consequence of [6, Thm. 1.2]). Let ε, p, q ∈ (0, 1) satisfy q = ε−1p. Suppose
that H is a collection of subgraphs of Kn with at most (1− ε)n edges. Then

P
[
G(n, p) contains

some H ∈ H

]
≤ P

[
a uniformly edge-coloured G(n, q),

with colours in [n], contains a rainbow H ∈ H

]
.

3 Rainbow spanning trees in randomly perturbed graphs
Let G ∼ G0 ∪G(n,C/n) and suppose G is uniformly coloured in [n − 1]. Let T be the
spanning tree of maximum degree at most d that we wish to embed in a rainbow fashion
in G. Our proof splits into two cases, according to the structure of the tree T : when T has
Ω(n) leaves; and when T has Ω(n) disjoint, not-too-short bare paths (where a bare path
is a path whose interior vertices have degree 2 in T ). An observation of Krivelevich [11]
shows that each tree falls into at least one of these categories.

3.1 Embedding trees with long bare paths

Suppose that T has Ω(n) not-too-short disjoint bare paths. Consider r such paths of length
` (where r = Ω(n) and ` is a constant which is not too small), and denote the ends of
the i-th path by xi, yi. Let F be the forest resulting from removing the interior vertices of
these bare paths from T .

We will use Theorem 2.1 to embed F in G 2. However, in order to be able to turn this
into a rainbow embedding of T (by embedding a rainbow collection of r paths of length `,

2Observe this still follows from Theorem 2.1 despite F being a forest. In fact we can find a rainbow
embedding of the almost spanning tree which consists of F and the edges xiyi.
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with the i-th path having endpoints xi, yi), we first prepare an absorbing structure, which is
an adaptation of such a structure of Montgomery [13]. The building block of our absorber
is given by the so-called (v, c)-gadget. These have been introduced by Gould, Kelly, Kühn
and Osthus [8] in the context of random optimal proper colourings of the complete graph,
and have already been used for perturbed graphs by the first two authors [9].

Given a vertex v and a colour c, a (v, c)-gadget Av,c is a graph on 11 vertices with the
following property (the notation refers to Figure 1). Av,c contains two rainbow paths P
and P ′ with the same end points, such that P uses all vertices in Av,c and has a c-coloured
edge, and P ′ uses all vertices apart from v and all colours of P except for c.

P1 P2v

u

u′

c

x y

zw

Figure 1: The (v, c)-gadget Av,c, where the paths P1 and P2 have length three and are
rainbow (with colours distinct from those already appearing). The path P (resp. P ′) is
uvu′P1wxP2zy (resp. uu′P1wzP2xy).

3.2 Embedding trees with many leaves

Suppose now that T has Ω(n) leaves. Roughly speaking, here is what we do. We first
remove a constant proportion of the leaves, one leaf per parent, and embed the resulting
almost-spanning tree in a rainbow fashion in G using Theorem 2.1. Completing this to
a rainbow embedding of T amounts to finding a rainbow perfect matching between the
removed leaves and their parents (since we removed one leaf for each parent), using all re-
maining colours. With some work, this follows from a forthcoming result of the authors [10],
which in turn is an adaptation of a recent preprint of the first two authors [9].

Let L be a maximal collection of leaves with distinct parents. By the maximum degree
assumption, |L| = Ω(n). Let L′ be the collection of parents of the leaves in L, so |L| = |L′|.
Let T ′ = T \L. Let G1 ∼ G(n,C/n) and colour G1 uniformly in [n− 1]. By Theorem 2.1,
with high probability, we can find a rainbow embedding of T ′ in G1

3. Then, observe that
the image of L′ in V under the embedding, and the complement of V (T ′) in the embedding,
are distributed uniformly at random among all disjoint subsets of V of size |L′|.

3 Theorem 2.1 applies when the number of vertices equals the number of colours, so formally it applies
on a subgraph of G1 on n − 1 vertices, which will be a binomial random graph with edge probability
C ′/(n− 1).
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Draw a new copy of the random graph G2 ∼ G(n,C/n). For each edge e ∈ E(G0) ∪
E(G2), reveal whether its colour lies in C(T ′), the set of colours in the rainbow embedding
of T ′. Let G′0 be the subgraph of G0 consisting of the edges which are disjoint from E(G1)
and have colours in C ′ := [n − 1] \ C(T ′). Then, from Chernoff’s bound, it follows that
G′0[L,L

′] has minimum degree Ω(n). Let G′2 be the subgraph of G2 whose edges are
coloured in C ′. Then G′2 is a copy of the random graph G(n,C ′/n), coloured uniformly
in C ′, for an appropriate (but still large) constant C ′.4 Let H = (G′0 ∪G′2)[L,L

′]. So H
is a balanced bipartite graph, with bipartition {L,L′}, each of whose edges is coloured
uniformly in C ′, a set of size |L|. It suffices to show that, with high probability, H has a
rainbow perfect matching.

We now show that this reduces to finding a rainbow directed Hamilton cycle in a
uniformly coloured directed perturbed graph. This can be proved as follows. Pick an
arbitrary bijection π : L′ → L and let D be the edge-coloured digraph on vertex set L with
the following edges: for each xy ∈ E(H), with x ∈ L and y ∈ L′, add the directed edge
xπ(y) and colour it by the colour of xy in H. It is straightforward to check that, if D has a
rainbow directed Hamilton cycle, then H has a rainbow perfect matching. Indeed, suppose
x1, . . . , x|L| is a rainbow Hamilton cycle in D. Then x1π−1(x2), x2π−1(x3), . . . , x|L|π−1(x1)
is a rainbow perfect matching in H.

It is also easy to check that D is distributed according to the directed perturbed model:
this is the union of a digraph with linear minimum in- and out-degree, and D(n, p), the
random directed graph, where each ordered pair of distinct vertices is an edge with prob-
ability p, independently. Moreover, D is uniformly coloured in C ′. The proof thus follows
from the next theorem.

Theorem 3.1 ( [10]). Let δ ∈ (0, 1). Then there exists C > 0 such that the following holds.
Let D0 be a directed graph on vertex set [n] with minimum in- and out-degree at least δn,
and let D ∼ D0 ∪D(n,C/n) be uniformly coloured in [n]. Then, with high probability, D
has a rainbow directed Hamilton cycle.

References
[1] E. Aigner-Horev, D. Hefetz, and A. Lahiri, Rainbow trees in uniformly edge-colored

graphs, Random Structures & Algorithms 62 (2023), no. 2, 287–303.

[2] N. Alon, M. Krivelevich, and B. Sudakov, Embedding nearly-spanning bounded degree
trees, Combinatorica 27 (2007), no. 6, 629–644.

[3] D. Bal and A. Frieze, Rainbow matchings and Hamilton cycles in random graphs,
Random Structures & Algorithms 48 (2016), no. 3, 503–523.

[4] T. Bohman, A. Frieze, and R. Martin, How many random edges make a dense graph
Hamiltonian?, Random Structures & Algorithms 22 (2003), no. 1, 33–42.

4Actually, edges of G′
2 which are also in G1 are not uniformly coloured, but there are very few of them

(O(log n) typically), so we ignore this issue for the rest of the section.



Rainbow spanning trees in uniformly coloured perturbed graphs 658

[5] A. Ferber, Closing gaps in problems related to Hamilton cycles in random graphs and
hypergraphs, Electronic Journal of Combinatorics 22 (2015), no. 1, Paper 1.61, 7 pp.

[6] A. Ferber and M. Krivelevich, Rainbow Hamilton cycles in random graphs and hyper-
graphs, Recent trends in combinatorics, vol. 159, Springer, 2016, pp. 167–189.

[7] A. Frieze and P.-S. Loh, Rainbow Hamilton cycles in random graphs, Random Struc-
tures & Algorithms 44 (2014), no. 3, 328–354.

[8] S. Gould, T. Kelly, D. Kühn, and D. Osthus, Almost all optimally coloured complete
graphs contain a rainbow Hamilton path, Journal of Combinatorial Theory, Series B
156 (2022), 57–100.

[9] K. Katsamaktsis and S. Letzter, Rainbow Hamiltonicity in uniformly coloured per-
turbed graphs, arXiv:2304.09155 (2022), https://arxiv.org/abs/2304.09155.

[10] K. Katsamaktsis, S. Letzter, and A. Sgueglia, Rainbow directed Hamilton cycles in
uniformly coloured perturbed digraphs, In preparation.

[11] M. Krivelevich, Embedding spanning trees in random graphs, SIAM Journal on Discrete
Mathematics 24 (2010), no. 4, 1495–1500.

[12] M. Krivelevich, M. Kwan, and B. Sudakov, Bounded-degree spanning trees in randomly
perturbed graphs, SIAM Journal on Discrete Mathematics 31 (2017), no. 1, 155–171.

[13] R. Montgomery, Spanning trees in random graphs, Advances in Mathematics 356
(2019), 106793.

https://arxiv.org/abs/2304.09155

	Introduction
	Almost-spanning rainbow trees in random graphs
	Rainbow spanning trees in randomly perturbed graphs
	Embedding trees with long bare paths
	Embedding trees with many leaves


