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Abstract

Let d ≥ 2 be a positive integer. We show that for a class of notions R of rank
for order-d tensors, which includes in particular the tensor rank, the slice rank and
the partition rank, there exist functions Fd,R and Gd,R such that if an order-d ten-
sor has R-rank at least Gd,R(l) then we can restrict its entries to a product of sets
X1 × · · · ×Xd such that the restriction has R-rank at least l and the sets X1, . . . , Xd

each have size at most Fd,R(l). Furthermore, our proof methods allow us to show
that under a very natural condition we can require the sets X1, . . . , Xd to be pairwise
disjoint.
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The results described below are proved and discussed further in the paper [5].

1 Main results
The last few years have seen a sequence of successes in using notions of ranks for higher-
dimensional tensors to solve combinatorial problems. A central idea from the breakthrough
solution to the cap-set problem by Ellenberg and Gijswijt [2], which was based on a tech-
nique of Croot, Lev, and Pach [1], was reformulated by Tao [11] in terms of the notion of
slice rank for tensors, leading to what is now known as the slice rank polynomial method.
The slice rank was further studied by Sawin and Tao [10], and bounds shown there on
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the slice rank involving orderings on the coordinates were later used by Sauermann [9] to
prove under suitable conditions the existence of solutions with pairwise distinct variables
to systems of equations in subsets of Fnp that are not exponentially sparse. Another fruitful
generalisation of the idea underlying the slice rank has been the partition rank, which was
defined by Naslund [8] in order to prove a polynomial upper bound on the size of subsets
of Fnpr not containing any k-right corners (with p a prime integer and r ≥ 1 a positive
integer) and very recently used again by Naslund [7] to prove exponential lower bounds on
the chromatic number of Rn with multiple forbidden distances.

We will focus on high-rank subtensors of tensors: it is a standard fact from linear
algebra that if A is a matrix of rank k then A has a k × k submatrix with rank k, and we
will study here the extent to which this statement can be generalised to notions of rank for
higher-order tensors, in particular to the tensor rank, to the slice rank and to the partition
rank. The results that we obtain in this direction as well as the methods that we use in
their proofs will also allow us to prove that under a very natural assumption we can find a
subtensor such that the coordinates take values in pairwise disjoint sets. As we explain in
a few paragraphs, the formulation of this second result also arises naturally as an analogue
of the standard inequality that every oriented graph has a bipartition such that at least a
quarter of the edges go from the first part to the second.

We now define the relevant notions of higher-dimensional ranks for tensors and state
our main theorems.

Definition 1. Let d ≥ 2 be a positive integer and let F be a field. An order-d tensor over
F is a function T : Q1 × · · · ×Qd → F for some finite subsets Q1, . . . , Qd of N.

Throughout we shall use the following notation. We write F for an arbitrary field, and
all our statements will hold uniformly in F. If d ≥ 2 is a positive integer, then Q1, . . . , Qd

will always stand for finite subsets of N. Given an order-d tensor T : Q1 × · · · × Qd → F
and subsets X1 ⊂ Q1, . . . , Xd ⊂ Qd, we shall write T (X1 × · · · × Xd) for the restriction
X1 × · · · ×Xd → F of T . For each positive integer n we write [n] for the set {1, 2, . . . , n}.
Given x ∈ Q1× · · · ×Qd, and I ⊂ [d], we write x(I) for the restriction (xα : α ∈ I) of x to
its coordinates in I.

Definition 2. Let d ≥ 2 be a positive integer, and let T be an order-d tensor. We say that
T has tensor rank at most 1 if there exist functions aα : Qα → F for each α ∈ [d] such that

T (x1, . . . , xd) = a1(x1) . . . ad(xd)

for every (x1, . . . , xd) ∈ Q1 × · · · ×Qd.
We say that T has slice rank at most 1 if there exist α ∈ [d] and functions a : Qα → F

and b :
∏

α′∈[d],α′ 6=αQα′ → F such that we can write

T (x1, . . . , xd) = a(xα)b(x1, . . . , xα−1, xα+1, . . . , xd)

for every (x1, . . . , xd) ∈ Q1 × · · · ×Qd.
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We say that T has partition rank at most 1 if there exist a bipartition {I, J} of [d] with
I, J both non-empty and functions a :

∏
α∈I Qα → F and b :

∏
α∈J Qα → F such that we

can write
T (x1, . . . , xd) = a(x(I))b(x(J))

for every (x1, . . . , xd) ∈ Q1 × · · · ×Qd.
We say that the tensor rank (resp. slice rank, resp. partition rank) of T is the smallest

nonnegative integer k such that there exist tensors T1, . . . , Tk each of tensor rank at most 1
(resp. slice rank at most 1, resp. partition rank at most 1) and such that T = T1+ · · ·+Tk.
We denote by trT the tensor rank of T , by srT the slice rank of T , and by prT the partition
rank of T .

We will begin by showing the fact that every matrix of rank k has a k × k subtensor
with rank k generalises in the best way one could hope for to the tensor rank for all d ≥ 2:
every order-d tensor T with tensor rank k has a k × k × · · · × k (d times) subtensor with
tensor rank k. However, that becomes false for the order-3 slice rank: we thank Timothy
Gowers for constructing a counterexample. It will nonetheless be true that if an order-3
tensor is such that all its subtensors with size at most 48l3 have slice rank at most l then
the whole tensor has slice rank at most 51l3. Finally we will show that such an asymptotic
subtensors property holds for the slice and partition rank for all d ≥ 2 as well as for a more
general class of notions of rank which we now define before stating this asymptotic result.

Definition 3. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. We say that an order-d tensor T has R-rank at most 1 if there exist a partition
P ∈ R and for each I ∈ P a function aI :

∏
α∈I Qα → F such that we can write

T (x1, . . . , xd) =
∏
I∈P

aI(x(I))

for every (x1, . . . , xd) ∈ Q1 × · · · × Qd. We say that the R-rank of T is the smallest
nonnegative integer k such that there exist order-d tensors T1, . . . , Tk with R-rank at most
1 such that T = T1 + · · ·+ Tk.

We will denote by RrkT the R-rank of T . We can check that for every d ≥ 2, the
R-rank specialises to the tensor rank, to the slice rank, and to the partition rank.

We are now in a position to state our first main theorem.

Theorem 4. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. There exist functions Fd,R : N → N and Gd,R : N → N such that if T is an order-d
tensor with RrkT ≥ Gd,R(l) then there exist X1 ⊂ Q1, . . . , Xd ⊂ Qd each with size at most
Fd,R(l) such that RrkT (X1 × · · · ×Xd) ≥ l.

Another independent starting point is the following standard statement.

Proposition 5. Let G be an oriented graph with vertex set V . There exists an ordered
bipartition (X, Y ) of V such that the number of edges (u, v) ∈ X × Y of G is at least a
quarter of the total number of edges of G.
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This statement can be seen to be equivalent to the following: given a matrix A :
[n] × [n] → F there exist disjoint subsets X, Y of [n] such that the restriction A(X × Y )
has at least a quarter as many support elements as A has outside the diagonal. A first
step will be to obtain an analogue of this statement for ranks of matrices. We thank Lisa
Sauermann for a sketch that led to the proof of that statement. We will then generalise
this analogue to higher-order tensors. We note that Proposition 5 and its generalisation to
uniform hypergraphs will themselves be involved in the proof of the general higher-order
tensor case.

Let E be the set of points (x1, . . . , xd) ∈ Q1×· · ·×Qd that do not have pairwise distinct
coordinates. The following definition will be central to our second main result.

Definition 6. Let d ≥ 2 be a positive integer, let R be a non-empty family of partitions of
[d]. For T : Q1 × · · · ×Qd → F an order-d tensor we define the essential R-rank

eRrkT = min
V

Rrk(T + V )

where the minimum is taken over all order-d tensors V : Q1 × · · · ×Qd → F with support
contained inside E, and the disjoint R-rank

dRrkT = max
X1,...,Xd

Rrk(T (X1 × · · · ×Xd))

where the maximum is taken over all X1 ⊂ Q1, . . . , Xd ⊂ Qd with X1, . . . , Xd pairwise
disjoint.

It seems worthwhile to compare the essential R-rank with the disjoint R-rank, as it is
straightforward to show that a tensor has essential R-rank equal to 0 if and only if it has
disjoint R-rank equal to 0: the corresponding tensors are the tensors supported inside E.
Moreover, we can show that the disjoint R-rank is at most the essential R-rank.

Lemma 7. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. For every order d tensor T : Q1 × · · · ×Qd → F we have

dRrkT ≤ eRrkT.

Our second main result is a weak converse to this last inequality.

Theorem 8. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. There exists a function G′d,R : N→ N such that if T is an order-d tensor such that
eRrkT ≥ G′d,R(l) then we have dRrkT ≥ l.

Theorem 8 is also an essential ingredient to the proof of the main result of the paper
[3], where in joint work with Timothy Gowers we generalise a theorem of Green and Tao
([4], Theorem 1.7) on the approximate equidistribution of polynomials with high rank over
finite prime fields to the case where the variables are chosen (uniformly and independently)
at random in an arbitrary non-empty subset of the field rather than in the whole field.
However, we will not focus on this application.

The methods involved in our proofs of Theorem 4 and of Theorem 8 are similar in
several ways: those that we will use to prove the latter can be viewed as a moderate
complication of those that we will use to prove the former.
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2 Proof example
As a simple representative example of our proof techniques, let us explain how we show
Theorem 4 in the case of the order-3 slice rank, assuming that it is already proved in the
case of the order-3 tensor rank. We begin by proving a lemma showing that having a large
separated set of slices guarantees a high slice rank. For T : Q1×Q2×Q3 → F and x ∈ Q1

we write Tx : Q2 × Q3 → F for the matrix defined by Tx(y, z) = T (x, y, z), and similarly
define the notations Ty and Tz.

Lemma 9. Let T : Q1 × Q2 × Q3 → F be an order-3 tensor, and l ≥ 1 be an integer. If
there exist x1 . . . , xl ∈ Q1 such that

rk(
l∑

i=1

aiTxi) ≥ l

for every (a1, . . . , al) ∈ Fl \ {0}, then srT ≥ l.

We next show a partial converse to the inequality srT ≤ trT which holds in the
situation where all slices of T of all three kinds have bounded rank.

Lemma 10. Let T : Q1 × Q2 × Q3 → F be an order-3 tensor. Let m ≥ 1 be a positive
integer. Assume that for all x ∈ Q1, y ∈ Q2, z ∈ Q3 we have rkTx, rkTy, rkTz ≤ m. Then
trT ≤ m(srT )2.

We are now ready to finish the proof.

Proposition 11. Let T : Q1 × Q2 × Q3 → F be an order-3 tensor, and let l ≥ 1 be a
positive integer. If srT ≥ 51l3 then there exist X ⊂ Q1, Y ⊂ Q2, Z ⊂ Q3 with size at most
48l3 such that srT (X × Y × Z) ≥ l.

Let T : Q1×Q2×Q3 → F be an order-3 tensor. If T satisfies the assumption of Lemma
9 then we can conclude using a multidimensional version of the standard statement on
submatrices. If T satisfies the assumption of Lemma 10 then we conclude by reducing
to the tensor rank. Furthermore, these two lemmas can be viewed to some extent as
representing two extreme cases, to which we can always reduce: if T is an order-3 tensor
with high slice rank but which is not in the first situation, then we can always decompose
it as a sum S + U where S has bounded slice rank and U is in the second situation, a
decomposition which hence allows us to prove Proposition 11 for all order-3 tensors.
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