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Abstract

The colouring defect of a cubic graph is the smallest number of edges left un-
covered by any set of three perfect matchings. While 3-edge-colourable graphs have
defect 0, those that cannot be 3-edge-coloured have defect at least 3. We show that
every bridgeless cubic graph with defect 3 can have its edges covered with at most five
perfect matchings, which verifies a long-standing conjecture of Berge for this class of
graphs. Moreover, we determine the extremal graphs.
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1 Introduction
A strong form of Petersen’s Perfect Matching Theorem [15] states that each edge of a
bridgeless cubic graph G is contained in a perfect matching. The minimum number of
perfect matchings needed to cover all the edges of G is its perfect matching index, denoted
by π(G). In 1970’s, Berge conjectured (unpublished, see [3, 10, 16]) that π(G) ≤ 5 for
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every bridgeless cubic graph G. After more than 50 years, this conjecture remains widely
open. In fact, very little is known unless the graph in question has a very specific structure,
see for example [1, 4, 5, 9]).

In this paper we investigate perfect-matching covers of bridgeless cubic graphs that are
close to 3-edge-colourable cubic graphs. If a cubic graph G can be 3-edge-coloured, then
obviously π(G) = 3, and π(G) ≥ 4 otherwise. If G cannot be 3-edge-coloured, then any set
{M1,M2,M3} of three perfect matchings of G leaves some edges uncovered. The minimum
number of uncovered edges is the colouring defect of G, denoted by df(G). This concept
was introduced and extensively studied by Steffen et al. in [8, 17]. Together with oddness,
resistance, perfect matching index, and other similar invariants it serves as one of measures
of uncolourability of cubic graphs [2].

Steffen [17] showed that the colouring defect of every non-3-edge-colourable cubic graph
(henceforth just defect, for short) is at least 3. Cubic graphs with defect 3 thus constitute
a class of cubic graphs that is in a certain sense closest to 3-edge-colourable graphs. The
purpose of this paper is to show that Berge’s conjecture holds for this class of cubic graphs
and to characterise the extremal graphs where five perfect matchings are actually necessary.
Our main result reads as follows.

Theorem 1.1. Every bridgeless cubic graph G of defect 3 can have its edges covered with
at most five perfect matchings; that is, 4 ≤ π(G) ≤ 5. If G is 3-connected, then π(G) = 5
if and only if G arises from the Petersen graph by inflating any number of vertices of a
fixed vertex-star (possibly zero) by quasi-bipartite cubic graphs in a correct way.

For cubic graphs with defect 3 this result significantly improves the result of Steffen
[17, Theorem 2.14] which states that every cyclically 4-edge-connected cubic graph with
defect 3 or 4 satisfies Berge’s conjecture.

2 Auxiliary results
The proof of Theorem 1.1 will be executed in several steps and will use a number of tools.
One of key ingredients, applied several times and at various stages of the proof, is the
following theorem which explores 6-edge-cuts in cubic graphs. Given a subgraph H of a
graph G, let δG(H) denote the edge-cut comprising all edges with exactly one end in H.

Theorem 2.1. Let G be a bridgeless cubic graph and let H ⊆ G be a subgraph with
|δG(H)| = 6. Then H has a perfect matching, or else H contains an independent set S of
trivalent vertices such that

(i) the number of components of H − S equals |S|+ 2, and

(ii) every component L of H − S has |δG(L)| = 3.

A bridgeless cubic graph Q will be called quasi-bipartite if it contains an independent
set of vertices U such that the graph obtained by the contraction of each component of
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Q − U to a vertex is a cubic bipartite graph where U is one of the partite sets. Roughly
speaking, a quasi-bipartite cubic graph arises from a bipartite cubic graph by inflating
certain vertices in one of the partite sets to larger subgraphs, while preserving the edges
between the partite sets. The previous theorem thus implies that if we add two new vertices
u and v to H and create a cubic graph H+ from H by attaching the edges of δG(H) to u
and v, then H+ becomes a quasi-bipartite with the independent set U = S ∪ {u, v}.

The second auxiliary result is also related to bipartite graphs. A cubic graph G is said
to be almost bipartite if it is bridgeless, not bipartite, and contains two edges e and f
such that G − {e, f} is a bipartite graph. The edges e and f are the surplus edges of G.
Observe that if a cubic graph G is almost bipartite, then it has a component such that e
connects vertices within one partite set and f connects vertices within the other partite
set. Moreover, it can be shown that G has a perfect matching that contains both surplus
edges. As a consequence, we obtain the following.

Theorem 2.2. Every almost bipartite cubic graph is 3-edge-colourable.

The bipartite index of a graph G is defined to be the smallest number of edges that
must be deleted in order to make the graph bipartite. The previous theorem implies that
every bridgeless cubic graph with bipartite index at most 2 is 3-edge-colourable. On the
other hand, there exist infinitely many snarks whose bipartite index equals 3, for example
the Isaacs flower snarks [6]. In this sense, Theorem 2.2 is best possible.

3 Berge covers for cubic graphs of defect 3
A Berge cover of a cubic graph G is a collection of five perfect matchings that cover all
the edges of G. To find such a cover for a graph of defect 3 we employ a structure created
by three perfect matchings. For a bridgeless cubic graph G we define an optimal 3-array
of perfect matchings to be any set M = {M1,M2,M3} of three perfect matchings such
that the number of edges not covered by M1 ∪M2 ∪M3 equals the defect of G. The core
of M is the subgraph of G induced by the set of all edges that are not simply covered
by M. It is not difficult to see that if df(G) = 3, then the core of M is a chordless
hexagon which alternates the uncovered edges with the doubly covered ones [17]. If G
is the Petersen graph, then any hexagon can be taken as the core of a suitable optimal
3-array. In particular, the defect of the Petersen graph equals 3.

To prove the first statement of Theorem 1.1 we show that every optimal 3-array M
for a cubic graph G with df(G) = 3 extends to a Berge cover. The key step towards the
proof is the next lemma. At the crucial moment of its proof we apply Theorem 2.1 to the
6-edge-cut δG(W ) where W is a suitable path of length 3 lying in the core ofM.

Lemma 3.1. Let G be a bridgeless cubic graph of defect 3 and letM be an optimal 3-array
of perfect matchings of G. Then G has a fourth perfect matching which covers at least two
of the three edges left uncovered byM.

With the help of Lemme 3.1 we can prove the following.
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Theorem 3.2. Every bridgeless cubic graph with defect 3 has a Berge cover.

Proof. Assume that df(G) = 3, and letM be an arbitrary optimal array for G. Let M4 be
a perfect matching guaranteed by Lemma 3.1, which covers at least two of the uncovered
edges. Since G has perfect matching that covers any preassigned edge, we can take a
perfect matching M5 that covers the third uncovered edge. Clearly, M∪ {M4,M5} is a
Berge cover of G.

4 Cyclically 4-edge-connected graphs
Our main result restricted to cyclically 4-edge-connected graphs reads as follows.

Theorem 4.1. Let G be a cyclically 4-edge-connected cubic graph with defect 3. Then
π(G) = 4, unless G is the Petersen graph.

Proof (sketch). We prove that if π(G) ≥ 5, then G is the Petersen graph. Take an optimal
3-array M for G whose core is a 6-cycle C = (v0v1 . . . v5), and set H = G − V (C). If H
had a perfect matching, we could extend it to a perfect matching M4 of the entire G in
such a way thatM∪ {M4} covers all the edges of G, implying that π(G) = 4. Therefore
H has no perfect matching, and we can apply Theorem 2.1 to the edge-cut δG(H). Let
S ⊆ V (H) be the independent set of trivalent vertices stated in Theorem 2.1. Then each
component of H − S is a single vertex, because G is 4-edge-connected. It follows that H
is bipartite, and therefore 3-edge-colourable.

We now investigate the 6-tuples of colours on δG(H) induced by 3-edge-colourings of H,
ordered cyclically around C. It is easy to see that all three colours must always occur,
otherwise the missing colour could be extended to a perfect matching M4 of G, yielding a
contradiction as before. There remain 15 colouring types for δG(H) of which 7 are excluded
because they would enable a 3-edge-colouring of G.

For i ∈ {0, . . . , 5} let ui be the neighbour of vi lying in H. We claim that ui = uj
whenever j ≡ i+3 (mod 6). If ui = uj, then indeed j ≡ i+3 (mod 6), otherwise G would
have a triangle or a quadrilateral intersecting C. The former possibility cannot occur due
to cyclic connectivity. In the latter case, the quadrilateral would share two edges with C,
in which caseM could be modified to a 3-edge-colouring of G, a contradiction. Suppose
that there exist vertices ui and uj such that ui 6= uj and j ≡ i + 3 (mod 6), say u2 6= u5.
Create a cubic graph H] from H as follows: add two new vertices s and t, connect them
between themselves and to {u0, u1, u3, u4}, and finally join u2 to u5. This can be done in
such a way that no 3-edge-colouring of H extends to H], implying that H] is not 3-edge-
colourable. However, H] is almost bipartite, which contradicts Theorem 2.2. Therefore
u0 = u3, u1 = u4, and u2 = u5. It follows that δG(C ∪ {u0, u1, u2}) is a 3-edge-cut, which
must be trivial due to cyclic connectivity. Hence G has 6 + 3 + 1 vertices, and this means
that G is the Petersen graph.
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5 General case of Theorem 1.1
To move away from cyclically 4-edge-connected graphs we modify the classical method of
snark reduction to cubic graphs of defect 3. By a snark we mean a 2-connected cubic graph
that admits no 3-edge-colouring. A snark is nontrivial if it is cyclically 4-edge-connected
with girth at least 5. It is well known that every snark can be transformed to a nontrivial
snark by a sequence of certain simple reductions (like contracting a triangle). Performing
a reduction of a snark G means to identify an edge-cut R in G whose removal leaves a
component H which is not 3-edge-colourable. By adding a small number of vertices or
edges it is possible to extend H to a snark G′, a reduction of G along R.

A reduction of a snark G with defect 3 to a nontrivial snark G′ of defect 3 may not
always be possible. Such a situation occurs, for example, when G contains an essential
triangle, one whose contraction produces a snark with defect greater than 3. It can be
shown that the increase of defect by contracting an essential triangle can be arbitrarily
large. Nevertheless, a snark with defect 3 can have at most one essential triangle, and if
so, then it is the only obstruction to reduction.

Theorem 5.1. Every snark G with df(G) = 3 admits a reduction to a snark G′ with
df(G′) = 3 such that either G′ is nontrivial or G′ arises from a nontrivial snark K with
df(K) ≥ 4 by inflating a vertex to a triangle; the triangle is essential in both G and G′.

The proof of this theorem is quite involved and requires a careful analysis of Fano flows
associated with 3-arrays (for the definition of a Fano flow see [7]).

Reductions can be conveniently handled with the help of two well-known operations.
Let G and H be cubic graphs with distinguished edges e and f , respectively. We define a
2-sum G⊕2H to be a cubic graph obtained by deleting e and f and connecting the 2-valent
vertices of G to those of H. If instead of distinguished edges we have distinguished vertices
u and v of G and H, respectively, we can similarly define a 3-sum G ⊕3 H. Note that
G⊕3 H can be regarded as being obtained from G by inflating the vertex u to H − v.

A cubic graphG containing a cycle-separating 2-edge-cut or 3-edge-cut can be expressed
as G ⊕2 H or G ⊕3 H uniquely, only depending on the chosen edge-cut. It is easy to see
that if two 2-cuts or 3-cuts intersect, the result of decomposition does not depend on the
order in which the cuts are taken. As a consequence, we have the following.

Theorem 5.2. Every 2-connected cubic graph G admits a decomposition into a collection
{G1, . . . , Gm} of cyclically 4-edge-connected cubic graphs such that G can be reconstructed
from them by a repeated application of 2-sums and 3-sums. Moreover, this collection is
unique up to ordering and isomorphism.

The first step in the proof of the general case of Theorem 1.1 is to show that, somewhat
surprisingly, cubic graphs with defect 3 containing an essential triangle behave nicely.

Theorem 5.3. If a cubic graph G with defect 3 has an essential triangle, then π(G) = 4.
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Proof (sketch). Let T be an essential triangle of G and let M be an optimal 3-array for
G with hexagonal core C. Let w be the unique neighbour of T not lying on C. First
assume that G/T is cyclically 4-edge-connected. We claim that G has a perfect matching
M4 such that M∪ {M4} covers all the edges of G. If not, we apply Theorem 2.1 to the
6-cut δG(C ∪ T ∪ {w}) and with the help of Theorem 2.2 we derive a contradiction in a
similar manner as in the proof of Theorem 4.1. If G is not cyclically 4-edge-connected, we
contract T to a vertex t and decompose G/T to K1, . . . , Km according to Theorem 5.2.
Exactly one Ki, say K1, contains the vertex t. We inflate t back to T , transforming K1 to a
graph L. Note that C survives the decomposition of G intact, so T is an essential triangle
of L. As L/T is cyclically 4-edge-connected, Theorem 4.1 implies that π(L/T ) = 4 or L/T
is the Petersen graph. In both cases L has a cover with four perfect matchings. By using
2-sums and 3-sums this cover can be extended to a cover of the entire G.

Let G and H be 2-connected cubic graphs where H is quasi-bipartite with independent
set U . We say that a 3-sum G⊕3H is correct if the distinguished vertex of H forms a trivial
component of H − U . Note that the result of a correct 3-sum is again quasi-bipartite.

Theorem 5.4. Let G and H be 2-connected cubic graphs where π(G) ≥ 5 and H is 3-
edge-colourable. Then π(G⊕3 H) ≥ 5 if and only if H is quasi-bipartite and the 3-sum is
correct.

Our intention is to characterise all 2-connected cubic graphs G with df(G) = 3 and
π(G) = 5. If G has a 2-edge-cut, then G can be expressed as G′⊕2H. Since no hexagonal
core can intersect a 2-edge-cut, the core stays within one summand, say G′. We conclude
that df(G′) = 3, π(G′) = 5, and that H is 3-edge-colourable. It follows that it is enough
to characterise 3-connected cubic graphs with df(G) = 3 and π(G) = 5. This is done in
the next theorem, whose proof concludes that of Theorem 1.1.

Theorem 5.5. Let G be a 3-connected cubic graph with df(G) = 3. Then π(G) = 5 if
and only if G arises from the Petersen graph by inflating any number of vertices of a fixed
vertex-star by quasi-bipartite cubic graphs in a correct way.

Proof (sketch). Assume that π(G) = 5. The statement is clearly true if G is cyclically
4-edge-connected, so we may assume that H0 = G can be expressed as a 3-sum H1 ⊕3 H

′
1.

By Theorem 5.3, G has no essential triangle, so every hexagonal core of G survives in one
of the summands, say H1. By Theorem 5.4, π(H1) = 5, H ′

1 is quasi-bipartite, and the
3-sum is correct. We now continue with the decomposition by applying Theorem 5.4 to
H1, and so forth. Eventually, we obtain a collection {G1, . . . , Gm} of cyclically 4-edge-
connected cubic graphs exactly one of which, say G1, is a snark, which has df(G1) = 3 and
π(G2) = 5. By Theorem 4.1, G1 is the Petersen graph. It means that G arises from G1 by
a repeated correct 3-sum with a number of quasi-bipartite graphs. Since a fixed hexagon
C ⊆ G1 must survive the summation as a core, only the four vertices of G−V (C), forming
a vertex-star complementary to C, are eligible as distinguished vertices for 3-sums. Thus
G has the structure which is described in Theorem 1.1. The reverse implication proceeds
along similar lines.
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6 Final remarks
This paper summarises results presented in several papers at various stages of writing. Full
proofs of Theorems 2.1-2.2, Theorem 3.2, and Theorem 4.1 can be found in [12], which is
available on arXiv. Theorem 5.1 and the fact that the contraction of an essential triangle
can increase defect arbitrarily are proved in [13]. The latter result heavily depends on
results proved in [14, Theorems 5.1-5.2]. Finally, Theorems 5.3-5.5 and Theorem 1.1 will
be proved in [11].
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