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Abstract

The Erdős-Sós conjecture states that the maximum number of edges in an n-vertex
graph without a given k-vertex tree is at most npk´2q

2 . Despite significant interest,
the conjecture remains unsolved. Recently, Caro, Patkós, and Tuza considered this
problem for host graphs that are connected. Settling a problem posed by them, for a
k-vertex tree T , we construct n-vertex connected graphs that are T -free with at least
p1{4´ okp1qqnk edges, showing that the additional connectivity condition can reduce
the maximum size by at most a factor of 2. Furthermore, we show that this is optimal:
there is a family of k-vertex brooms T such that the maximum size of an n-vertex
connected T -free graph is at most p1{4` okp1qqnk.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-086

1 Introduction
In extremal graph theory, a central focus is determining the extremal number of various
graphs. The extremal number, denoted by expn, F q, is the maximum number of edges in
an n-vertex graph that does not contain a graph F as a subgraph, not necessarily induced.
While the asymptotic behavior of this function has been determined for all non-bipartite
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graphs by Erdős, Stone, and Simonovits [6, 10], the behavior for bipartite graphs remains
open with significant interest from the community.

The Erdős-Gallai theorem [9], established in 1959, studied the k-vertex path Pk, stating
that expn, Pkq ď

npk´2q
2

, and the maximum value is achieved by YKk´1, the disjoint union
of Kk´1 when k ´ 1

ˇ

ˇn. Once the extremal number of the path is determined, extending the
question to a tree is a natural next step. In 1962, Erdős and Sós [7] conjectured that for
any k-vertex tree, its extremal number is at most npk´2q

2
, and again the disjoint union of

Kk´1 serves as an example for tightness.
Motivated by the fact that the conjectured maximizer YKk´1 is not connected, a natural

variant is to consider host graphs that are connected, see e.g [15, 4]. Formally, the connected
extremal number excpn, F q is the maximum number of edges in an n-vertex connected graph
without a subgraph isomorphic to F . While the additional connectivity condition does not
affect the asymptotics of the extremal number when the forbidden graph is non-bipartite
or 2-edge-connected, Caro, Patkós, and Tuza [4] investigated what effect it has for trees.
Notice that, in contrast with the classical extremal number, its connected relative is not
even a monotone function of n. Indeed, for paths, it is known that for every k ě 10,
excpk, Pkq “

`

k´2
2

˘

` 2 ă
`

k´1
2

˘

“ excpk ´ 1, Pkq.
Such connected variant for trees was in fact studied before and could date back to the

work of Kopylov [19] in 1977, in which he resolved the problem for paths, showing that for
n ě k ě 4,

excpn, Pkq “ max

"ˆ

k ´ 2

2

˙

` pn´ pk ´ 2qq,

Z

k ´ 2

2

^

pn´

R

k

2

V

q `

ˆ

P

k
2

T

2

˙*

. (1)

Later, Balister, Győri, Lehel, Schelp [1] characterized extremal graphs for every n. There are
also recent developments towards the stability version of this theorem by Füredi, Kostochka,
Luo, Verstraëte [13, 14].

By Erdős-Gallai theorem and Kopylov’s result (1), we see that the asymptotic of the
maximum number of edges in an n-vertex Pk-free graph does not change by an additional
connectivity constraint as n Ñ 8 and k Ñ 8. Caro, Patkós, and Tuza [4] studied how
much smaller excpn, T q can be for a k-vertex tree T , compared to npk´2q

2
. Formally, they

defined

γk :“ inf
!

lim sup
nÑ8

excpn, Tkq
npk´2q

2

: Tk is a k-vertex tree
)

and γ :“ lim
kÑ8

γk. (2)

It is not hard to see that this limit exists. From above, Caro, Patkós, and Tuza [4] found a
family of trees whose connected extremal number is asymptotically smaller, yielding γ ď 2

3
.

From below, for every tree, they gave constructions showing that γ ě 1
3
. They asked where

the truth lies between 1
3
and 2

3
.

Our main result settles this problem.

Theorem 1.1. Let γ be as defined in (2), we have γ “ 1
2
.



How connectivity affects the extremal number of trees 625

To obtain the lower bound γ ě 1
2
, we provide several families of different constructions

depending on the ‘center of mass’ of the forbidden tree (see Section 2.1), realizing the
following.

Theorem 1.2. For any k-vertex tree Tk, we have

excpn, Tkq ě

ˆ

1

4
´ okp1q

˙

kn.

On the other hand, we determine the exact connected extremal number of brooms with
k vertices and diameter d, denoted by Bpk, dq, for large enough n. In particular, Bpk, dq is
the graph obtained from a path of d` 1 vertices by blowing up a leaf to an independent
set of size k ´ d. The following theorem is stated using graphs Gn,¨,¨ and Fn,¨,¨, which are
defined in Sections 2.2 and 3.1. Some of these graphs (so-called edge blow-up of stars) have
been studied before, see e.g. [5, 8, 27]. As the path is also a broom, the result below can be
viewed as an extension of Kopylov’s result (1).

Theorem 1.3. For every integer k and d such that k ě d` 2 ě 8, and n ě kdk we have

excpn,Bpk, dqq “

$

’

’

’

’

’

&

’

’

’

’

’

%

epGn,d,t d´1
2 uq if d ě k`5

2
,

maxtepGn,d,t d´1
2 uq, epFn, k`2

2
,1qu if d=k`2

2
or k`4

2
,

maxtepGn,d,t d´1
2 uq, epFn,d,2q, epFn,d,3qu if d “ k`3

2
,

Y

pk´dqn
2

]

if d ď k`1
2
.

As a corollary, we get the matching upper bound γ ď 1
2
as excpn,Bpk,

P

k
2

T

qq “
`

1
4
` okp1q

˘

kn.

2 Overview of the proof of Theorem 1.2
In this section, we first introduce a key concept: the barycenter of a tree. We then provide
three special graphs Gn, k´c

2
, k´c

4
, Sn,x and Pn,x, each of which has p1

4
´ okp1qqkn edges, where

c is a constant. By considering the degree of the barycenter vertex of the tree Tk, we can
find a Tk-free graph G such that G is isomorphic to one of Gn, k´c

2
, k´c

4
, Sn,x and Pn,x for some

x.

2.1 The Barycenter of a tree

For any tree T on k vertices, we call a vertex v of T a barycenter if v belongs to a largest
connected component of T ´ e for every edge e in T , that is, the vertex v belongs to the
component of size at least rk

2
s in the graph obtained from T by removing an edge e.

Proposition 2.1. Every tree has either a unique barycenter, or there are exactly two
barycenters in the tree joined by an edge.
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2.2 Constructions of various classes of graphs

The family Gn,¨,¨. We first define the family of extremal graphs for (1). Recall ‘Y’
denotes the disjoint union of graphs, ‘`’ denotes the join of the graphs, and Kt denotes
an independent set of size t. For n ě k ě 2s let Gn,k,s :“

`

Kk´2s YKn´k`s

˘

` Ks, see
Figure 2.1. Note that for every n and k, there exists a constant a such that k ă a ă 2k and
the only extremal graphs achieving equality in (1) are Gn,k´1,1 for n ď a and Gn,k´1,t k´2

2 u

for n ě a. Clearly, epGn, k´c
2

, k´c
4
q “ p1

4
´ okp1qqkn.

The families Sn,x and Pn,x. Let x be an integer such that k
2
ă x ă k or x “

X

k´2
2

\

. For
the sake of simplicity of the write-up, we denote

ax :“

#

Y

2x2

k

]

´ 2 if k
2
ă x ă k, and

x if x “
X

k´2
2

\

.

Kk´2s Ks Kn´k`s
¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

Kx Kx Kx Kx

P PPax´x`2 Pax´x`2 Pax´x`2 Pax´x`2

w w0 w1

¨ ¨ ¨ ¨ ¨ ¨

Figure 2.1: The graph Gn,k,s on the left, the graph Sn,x in the middle and the graph Pn,x on
the right.

Let Sn,x be a graph consisting of
Y

n´1
ax

]

vertex disjoint Kx with pendant paths of length

ax ´ x, a path of n ´ 1 ´ ax

Y

n´1
ax

]

vertices and a vertex w adjacent with an endpoint of
each of these paths.

Let Pn,x be a graph consisting of
Y

n
ax`1

]

vertex disjoint Kx with pendant paths of length

ax ´ x` 1 with the terminal leaf wi (i ě 1), a path of n´ pax ` 1q
Y

n
ax`1

]

vertices with a
terminal leaf w0, such that w0w1 . . . wt n

ax`1u is a path.
It is easy to see that epSn,xq “ p

1
4
´ okp1qqkn and epPn,xq “ p

1
4
´ okp1qqkn.

Now we give the overview of the proof of Theorem 1.2: Let v be a barycenter of the
tree Tk, which exists by Proposition 2.1. Let x1 “

X

k´2
2

\

and x2 “
Y

k?
2

]

. We split the proof
into three cases: dpvq “ 2, dpvq ě 4 and dpvq “ 3. For the cases dpvq “ 2 and dpvq ě 4, we
show that Sn,x1 and Pn,x1 are Tk-free, respectively. For the case dpvq “ 3, we show that
either Tk can not be embedded in Sn,x2 or Pn,x2 , or Tk contains two vertex disjoint sub-trees
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S1 and S2, each of which is isomorphic to a spider1 with the central vertex of degree at
most three and vpS1q ` vpS2q ě

k´c
2

for some constant c and thus Tk can not embedding in
Gn,2pt k´c

4 u´5q,t k´c
4 u´5. In these three cases, we can always get the desired lower bound.

3 Overview of the proof of Theorem 1.3
In this section, we first construct some edge blow-up of stars Fn,d,¨ in Section 3.1, which
epFn,d,¨q achieves the lower bound of excpn,Bpk, dqq. To prove the upper bound of excpn,Bpk, dqq
we need some theorems, see Section 3.2.

3.1 The family Fn,¨,¨

For n ą d ě 2, let Fn,d,1 be the n-vertex connected graph such that every maximal 2-
connected block is a clique of size d´ 1 except at most one clique of size n´

X

n´1
d´2

\

pd´ 2q,
all sharing a common vertex. Thus if n´ 1 “ pd´ 2qp1 ` q1 for non-negative integers p1
and q1 such that 0 ď q1 ă d´ 2 then

epFn,d,1q “ p1

ˆ

d´ 1

2

˙

`

ˆ

q1 ` 1

2

˙

“
pd´ 1qpn´ 1q

2
´
q1pd´ 2´ q1q

2
.

Let Fn,d,2 be the n-vertex connected graph such that every maximal 2-connected block
is a clique with one of size d ´ 1, the rest of size d ´ 2 except at most one clique of size
n ´ 1 ´

X

n´2
d´3

\

pd ´ 3q, all sharing a common vertex. Thus if n ´ 2 “ pd ´ 3qp2 ` q2 for
integers p2 and q2 such that p2 ě 1 and 0 ď q2 ă d´ 3 then

epFn,d,2q “ p2

ˆ

d´ 2

2

˙

` d´ 2`

ˆ

q2 ` 1

2

˙

“
pd´ 2qn

2
´
q2pd´ 3´ q2q

2
.

For an even integer d, let n ´ 1 “ pd ´ 3qp3 ` q3 for integers p3 and q3 such that
0 ď q3 ă d´ 3. If p3 ě q3, let Fn,d,3 be the n-vertex connected graph such that it contains
p3 maximal 2-connected blocks G1, . . . , Gp3 all sharing a common vertex v with p3 ´ q3 of
them being the cliques of size d´ 2. The rest of the maximal 2-connected blocks Gi are the
cliques of size d´ 1 without a perfect matching of Gi ´ v. We have

epFn,d,3q “
pd´ 2qpn´ 1q

2
.

If p3 ă q3, let Fn,d,3 be the n-vertex connected graph such that it contains p3 ` 1 maximal
2-connected blocks G1, . . . , Gp3`1 all sharing a common vertex v with p3 of them being the
cliques of size d´ 1 without a perfect matching of Gi ´ v and the remaining one is a clique
of size q3 ´ p3 ` 1. We have

epFn,d,3q “ p3
pd´ 2q2

2
`

ˆ

q3 ´ p3 ` 1

2

˙

“
pd´ 2qpn´ 1q

2
´
pq3 ´ p3qpd´ 3´ pq3 ´ p3qq

2
.

1Spider is a tree with all vertices of degree at most two, except one vertex of any degree, referred to as
the central vertex of the spider.
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3.2 Other tools

Let Cěk denote the class of cycles of length at least k. For a class of graphs F , the Turán
number of F is the maximum number of edges in a graph not containing a subgraph F for
all F P F , denoted by expn,Fq.

Woodall [25] and independently Kopylov [19] improved Erdős-Gallai theorem [9] for
long cycles and obtained the following exact result for every n, see also [12].

Theorem 3.1 (Woodall [25], Kopylov [19]). Let n “ ppk´ 2q ` q ` 1, where 0 ď q ă k´ 2
and k ě 3, p ě 1,

expn, Cěkq “ p

ˆ

k ´ 1

2

˙

`

ˆ

q ` 1

2

˙

“
pk ´ 1qpn´ 1q

2
´
qpk ´ 2´ qq

2
.

Theorem 3.2 (Kopylov [19], Woodall [25], Fan, Lv and Wang [11]). Suppose n ě k ě 5,
then every 2-connected n-vertex Cěk-free graph contains at most

max

"ˆ

k ´ 2

2

˙

` 2pn´ pk ´ 2qq,

Z

k ´ 1

2

^ˆ

n´

R

k ` 1

2

V˙

`

ˆ

P

k`1
2

T

2

˙*

edges.

The extremal graphs are Gn,k,2 and Gn,k,t k´1
2 u.

Now we give a overview of the proof of Theorem 1.3: For the lower bound of excpn,Bpk, dqq,
we consider the following Bpk, dq-free graphs: Gn,d,t d´1

2 u, an almost pk ´ dq-regular graph,

Fn, k`2
2

,1 if d “ k`2
2

or k`4
2
, Fn,d,2 and Fn,d,3 if d “ k`3

2
.

For the matching upper bound, let G be an n-vertex connected Bpk, dq-free graph with
n ě kdk and let v be a vertex of G such that dpvq “ ∆pGq. We divide the proof into three
cases depending on the value of ∆pGq. If ∆pGq ď k ´ d then we easily get the desired
upper bound

Y

pk´dqn
2

]

. If k ´ d ` 1 ď ∆pGq ď k ´ 2, then there exists a path of at least
dk vertices starting at v by considering a breadth-first search tree from the vertex v, and
then by pigeonhole principle we will find a copy of Bpk, dq in G resulting in a contradiction.
For the last case ∆pGq ě k ´ 1, if G is 2-connected then we get the desired upper bound
by Theorem 3.2; otherwise, we assume G is not 2-connected and its maximal 2-connected
blocks are G1, G2, . . . , Gs. By Theorem 3.1, the circumference of G is either d´ 2 or d´ 1
or we have the desired upper bound. And by Theorem 3.2, each epGiq is bounded for i P rss.
By using the properties of G (the circumference and Bpk, dq-free), we can get the desired
upper bound.

4 Concluding remarks
For the Turán problem, we determine the maximum effect the additional connectivity
condition could have over all trees. An interesting future direction of research would be to
identify appropriate parameters (if exist) of a tree that determine the asymptotic behavior
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of its connected extremal number. The constructions in Sections 2 and 3 could be useful
for this problem.

The reader interested in the problems and extensions related to Erdős-Sós conjecture we
refer to the following papers [2, 22, 17, 20, 21, 23, 26, 3], extensions for Berge hypergraphs
see [16, 18], extensions for colored graphs see [24].

Caro, Patkós, Tuza [4] asked whether the connected extremal number becomes monotone
eventually. In particular, for every graph F , there exists a constant NF , such that for every
n ě NF , excpn, F q ď excpn` 1, F q. We observe that this is true when F contains a cycle.

Proposition 4.1. For every graph F containing a cycle, there exists a constant NF such
that for every n ą NF we have excpn, F q ă excpn` 1, F q.
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