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Abstract
The Cops and Robber game on geodesic spaces is a pursuit-evasion game with

discrete steps which captures the behavior of the game played on graphs, as well as
that of continuous pursuit-evasion games. One of the outstanding open problems
about the game on graphs is to determine which graphs embeddable in a surface
of genus g have largest cop number. It is known that the cop number of genus g
graphs is O(g) and that there are examples whose cop number is Ω̃(

√
g ). The same

phenomenon occurs when the game is played on geodesic surfaces.
In this paper we obtain a surprising result when the game is played on a surface

with constant curvature. It is shown that two cops have a strategy to come arbitrarily
close to the robber, independently of the genus. For special hyperbolic surfaces we
also give upper bounds on the number of cops needed to catch the robber. Our results
generalize to higher-dimensional hyperbolic manifolds.
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1 Introduction
The Cops and Robber game is a pursuit-evasion game. The game is commonly played on
graphs [1, 5, 6, 7, 9, 12, 16, 19], and as a new variant on geodesic spaces [15, 21, 22]. The
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players in the Cops and Robber game are the robber r and k cops c1, . . . , ck. On graphs the
players occupy vertices while on geodesic spaces the players occupy points in space. The
game is played in rounds. The robber chooses initial positions for the players r0, c01, . . . , c0k
and in each round of the game the players can move to a new position1. Each round of
the game has two turns, the first one for the robber and the second one for the cops. In
particular, each of the cops can make a step at the cops’ turn. When the game is played
on a graph, the players are allowed to move to an adjacent vertex at their turn. When the
game is played on a geodesic space X, the robber chooses an agility function τ : N→ R+

at the beginning of the game such that
∑

n≥1 τ(n) = ∞. In the n-th round, each player
makes a step of length at most τ(n) (at their turn). The position of the robber r after
round n is denoted as rn, and the position of the cop ci as cni . In the following we give
the robber the pronoun he, him, while the cops have the pronoun she, her. We say the
cops catch the robber if at some point in the game the cop ci occupies the same position
as the robber r. If the robber is not caught, we say the robber escapes. The cop number
c(G) of a graph G is the minimum number of cops that can catch the robber (regardless
of the robber’s strategy and initial positions). For a geodesic space X we denote by c0(X)
the cop catch number, which is the minimum number of cops that can catch the robber.
Further, if the game is played on a geodesic space, we say that the cops win the game if

inf
n,i
d(cni , r

n) = 0. (1)

If the cops do not win the game, we say that the robber wins the game, which means that
he can stay at distance at least ε away from the cops, for some ε > 0. For a geodesic space
we denote by c(X) the cop win number, that is the minimum number of cops that can win
the game.

One of the first results about cop numbers given by Aigner and Fromme states that
planar graphs have cop number at most 3 [1]. For graphs embeddable in a surface of genus
g it is known that the cop number is at most linear in g and recent progress was made
on improving the linear factor [8, 11, 24]. It is an outstanding open problem to determine
which graphs embeddable in a surface of genus g have largest cop number. There are
graphs of genus g with cop number at least g

1
2
−o(1), one such example are binomial random

graphs Gn,p with p = 2 logn
n

[5, 20]. The gap between the upper and lower bound is large
and it is conjectured that the lower bound gives the right order of the cop number.

Conjecture 1 ([20, 22]). Let S be a a graph of genus g. Then c(S) = O(
√
g).

Similarly, the cop win number for a surface of genus g is at most linear in g [21]. It was
shown that for graphs of cop number at least 3 there exists a surface S of genus g with
c(S) ≥ c(G) [21]. Therefore there are compact surfaces of genus g with cop win number at
least g

1
2
−o(1). The following conjecture is a tough conjecture since it implies Conjecture 1.

Conjecture 2 ([22]). Let S be a geodesic surface of genus g. Then c(S) = O(
√
g).

1The rules of the Cops and Robber game on graphs we define here are slightly different to standard
rules, but they do not affect the outcome of the game on connected graphs.
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Surprisingly, the upper bound from Conjecture 2 can be significantly improved for
surfaces of genus g which are hyperbolic, that means they have constant curvature −1.
Since our results extend to higher-dimensional hyperbolic manifolds, we state the more
general version.

Theorem 3. If M is a compact hyperbolic manifold, then c(M) = 2.

An important tool for determining upper bounds for cop numbers is the Isometric Path
Lemma, which we use to establish Theorem 3 and to show the cop catch number for special
surfaces of genus g ≥ 2 is at most 6.

Lemma 4 ([1, 22]). Let I be an isometric path starting at A and ending at B. Then one
cop c can guard I after spending time equal to the length of I on the path to adjust himself.

The Cops and Robber game on geodesic spaces is tightly related to continuous and
discrete pursuit-evasion games on metric spaces. In continuous pursuit-evasion games the
players make decisions at every point in the time interval [0,∞). For example, Besicovitch
showed that in the Lion and Man game as introduced by Rado (see Littlewood’s Miscel-
lany [18]), the man can escape the lion when the game is played on a disk. Croft studied a
variation of this game with multiple pursuers on higher dimensional balls [10] and Satimov
and Kushkarov studied the game on the sphere [23].

The Discrete Lion and Man game is the Cops and Robber game where the agility
function is constant, i.e. τ ≡ K for some constant K. It was shown that in the Discrete
Lion and Man game the lion can catch the man on a disk, more generally, the lion can
catch the man on any compact CAT(0)-space [4, 26]. While the Cops and Robber game is
a discrete pursuit-evasion game, it captures the properties of the continuous game, in the
sense that in the Cops and Robber game one cop cannot catch the robber when the game
is played on a disk [15].

2 Proof Sketch of Theorem 3
We denote byHn the n-dimensional hyperbolic space. By the Killing-Hopf Theorem [13, 17]
any hyperbolic manifold arises from a tessellation of hyperbolic space, for an example see
Figure 2. More precisely, any hyperbolic manifold is isometric to Hn/Γ where Γ is a group
of isometries of Hn acting freely and properly discontinuously. In order to show Theorem 3,
we play the game in the covering space Hn of the manifold. It was shown that if C is the
covering space of a geodesic spaceX that locally preserves distances, then c(X) ≤ c(C) [15].
We will use the idea of the theorem in this proof. In order to simplify our exposition, we
provide a sketch of the proof for Theorem 3 only for 2-dimensional manifolds which are
surfaces. Let s = sys(S) be the systolic girth of the hyperbolic surface S, which is the
length of the smallest non-contractible curve.

To show that c(S) > 1 we play the game with one cop c and the robber r. The
robber chooses the agility function τ ≡ s

8
and initial positions such that d(c0, r0) > s

8
. If

d(ck, rk) ≥ 3s
8
, then the robber does not move and rk+1 = rk. If d(ck, rk) < 3s

8
, the robber
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moves in the direction opposite to the cop’s position, i.e. the shortest paths from rk to
ck and rk to rk+1 meet at rk at angle π. To argue that such a position exists with the
additional assumption that d(rk+1, ck) = d(rk, ck) + s

8
, the Gauss-Bonnet Theorem can be

applied, for details we refer to the full version of the paper [14]. In both cases the robber
can stay at distance at least s

8
to the cop, which proves the lower bound.

We sketch the proof strategy for the upper bound. Let D = diam(S), which is the
largest distance between two points in S. The rounds are grouped into blocks, that is, we
consider integers representing time steps 1 = t0 < t1 < t2 < . . . such that

∑ti+1−1
k=ti

τ(k) ≥
30D. For each time step k we choose a representation Ck

i , R
k of cki , rk in the covering space

H2. By definition of distance on a hyperbolic surface, dH2(Ck
i , R

k) ≥ dH2(cki , r
k) (i = 1, 2).

We show that the cops have a strategy such that infk dH2(Ck
i , R

k) = 0. At each time step ti,
the cop c2 chooses a new representation Cti

2 of its position cti2 in the covering space, which
means d(Cti−1

2 , Cti
2 ) is possibly greater than τ(ti) but we maintain that d(cti−12 , cti2 ) ≤ τ(ti).

In between the time steps ti, ti+1 we choose the representation of the cops and the robber
such that they are coherent with the agility function, which means dH2(Rk−1, Rk) ≤ τ(k)
and d(Ck−1

i , Ck
i ) ≤ τ(k) for ti < k < ti−1. Let Rti , Cti

1 be a copy of the robber’s and cop’s
position in the covering space, such that their distance in the covering space is the same
as in the surface. We consider the geodesic g0 through Rti , Cti

1 . The choice of the position
Cti

2 for cop c2 is such that it is close to the geodesic g0 but sufficiently far from Rti , which
we make more precise in the following.

Let P be the point on g0 at distance 10D to Rti that is further away from Cti
1 . Note that

there is a copy Cti
2 of cti2 in the covering space which is at distance at most D = diam(S)

from P . We consider h = og0(C
ti
2 ), the orthogonal geodesic to g0 through Cti

2 .

Claim 1. h ∩ g0 is at distance between 9D and 11D from Rti and at distance at most D
from Cti

2 .

The strategy of cop c2 is to chase the orthogonal projection of Rk on h. Note that by
Claim 1 the distance from Rti to h is at least 9D. Let B,B′ be points on h at distance
8D from B0 := g0 ∩ h, see Figure 1(a). The cop c2 can guard the path from B to B′ on
h, since his distance to B0 is at most D, so his distance to B,B′ is at most 9D, which is
at least the distance from Rti to B,B′. Let gk = oh(C

k
1 ) be the orthogonal geodesic to h

through Ck
1 , see Figure 1(b).

Suppose Rk, Rk+1 are contained in the triangle defined by B, h ∩ gk and Ck
1 . Then we

move cop c1 towards B such that:

The robber’s position Rk+1 and B are on the same side of gk+1. (2)

The (k + 1)-st position Ck+1
1 of cop c1 is

(a) the point between Ck
1 and B s.t. d(Ck+1

1 , Ck
1 ) = τ(k+ 1) if this step does not violate

(2),

(b) otherwise, the closest point to Rk+1 on the geodesic oh(Rk+1) (the orthogonal geodesic
to h through Rk+1) which satisfies d(Ck+1

1 , Ck
1 ) = τ(k + 1).
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Figure 1: Figure (a) is a schematic drawing of the robber’s and the cops’ position at time
step ti (1 ≤ i). Figure (b) is a schematic drawing of the robber’s and the cops’ position at
time step ti < k < ti+1.

The strategy is similar if the robber moves towards B′. If the robber crosses Ck
1B or Ck

1B
′

for some ti < k < ti+1, then the cops’ strategy for the steps ti + 1, . . . , ti+1− 1 is simply to
walk towards the robber. At step ti+1 the strategies reset.

Claim 2. Either the robber gets caught by the cops or he crosses Ct
1B or Ct

1B
′ for some

t with ti < t < ti+1. Further, for each ε > 0 there exists some δ = δ(ε), such that if
d(Rti , Cti

1 ) ≥ ε, then

d(Rt, Ct
1)− d(Rti , Cti

1 ) ≥ δε.

Claim 2 shows that the cop c1 comes eventually ε-close to the robber, which means
d(Rk, Ck

1 ) < ε for some k. This is enough to show that the cops can win the game on S.
For the proofs of Claims 1 and 2 we refer the reader to the full version of the paper [14].

3 Catching the Robber
We define by P (k, θ) the regular k-gon in the Poincaré disk D centred at O = (0, 0) with
angle θ at the vertices. We denote its vertices by v1, . . . , vk in counter-clockwise direction
and let ai be the (oriented) edge from vi to vi+1 and a−1i be the reversed edge from vi+1 to
vi (we consider the indices modulo k). We are going to consider three standard hyperbolic
surfaces for g ≥ 2, where one of them is non-orientable.

• Let S(g) be the orientable surface obtained from P
(

4g, 2π
4g

)
by identifying the (ori-

ented) edges a4i−3 with a−14i−1 and a4i−2 with a−14i for i = 1, . . . , g. The surface S(2) is
depicted in Figure 2.

• Let S ′(g) be the orientable surface obtained from P
(

4g + 2, 2π
2g+1

)
by identifying

opposite (oriented) edges ai, a−1i+2g+1 for i = 1, . . . , 2g.
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• Let N(g) be the non-orientable surface obtained from P
(

2g, 2π
2g

)
by identifying the

(oriented) edge a2i with a2i+1 for i = 1, . . . , g.

a1

a2

a5

a6

(a)

a1a−1
1

a2

a−1
2

a5 a−1
5

a6

a−1
6

v1

v3 v2

v4

v8

v6 v7

v5

(b)

Figure 2: The surface S(g) as a standard geometric model for the double torus with its
fundamental domain P

(
4g, 2π

4g

)
in the Poincaré disk D.

Lemma 5. Suppose the robber is contained in a bounded convex polygon in the Poincaré
disk D where n cops guard the boundary of the polygon. Then these n cops can catch the
robber.

We can deduce the following theorem from Lemma 5.

Theorem 6. If g ≥ 2, then (a) c0(S(g)) ≤ 5, (b) c0(S ′(g)) ≤ 6 and (c) c0(N(g)) ≤ 4.

Proof. We will give the proof only for (a), the proof for the other surfaces is similar. Let
O be the midpoint of the fundamental polygon P

(
4g, 2π

4g

)
. We will play the game in the

covering space and choose the player’s positions such that they are in P
(

4g, 2π
4g

)
. We will

first use the cops c1, c2, c3 to guard isometric paths. We start by moving cop c1 to the
isometric path Ov1, cop c2 to the isometric path Ov5 and cop c3 to the isometric path Ov9.
By Lemma 4 we can assume that after a finite amount of time the cops guard the respective
isometric paths. Now if the robber is in one of the triangles Ovjvj+1 for some 1 ≤ j ≤ 4,
then the robber’s moves are restricted to the specified triangles since a1 = a−13 and a2 = a−14 .
Similarly if the robber is contained in one of the triangles Ovjvj+1 for some 5 ≤ j ≤ 8 his
moves are restricted to these triangles. If the robber is outside Ovjvj+1 for some 1 ≤ j ≤ 8,
we move cop c2 to the isometric path Ov13 and wait until he is guarding it. If the robber is
in one of the triangles Ovjvj+1 for 9 ≤ j ≤ 12, his moves are restricted to these triangles.
If the robber is not contained in one of these triangles we keep going for i = 3, 4, . . . in the
same way, moving the cop currently guarding Ov1+4i to guard Ov1+4(i+2) unless i+2 = g, in
which case the robber is contained in one of Ov4g−3v4g−2, Ov4g−2v4g−1, Ov4g−1v4g or Ov4gv1,
cop c1 guards Ov1 and one of c2 or c3 guards Ov4g−3.
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We assume without loss of generality that cop c1 guards Ov1, cop c2 guards Ov5 and
the robber is in one of the triangles Ovjvj+1 for some 1 ≤ j ≤ 8. Cop c3, c4, c5 will guard
Ov2, Ov3, Ov4, respectively. Now the robber is captured in either R1 = Ov1v2 ∪ Ov3v4 or
R2 = Ov2v3 ∪ Ov4v5. The regions R1 and R2 can be embedded in the covering space D
such that they form a quadrilateral which is guarded by four of the cops. By Lemma 5 we
can now catch the robber.
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