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Abstract

A long-standing question of the mutual relation between the stack and queue
numbers of a graph, explicitly emphasized by Dujmović and Wood in 2005, was “half-
answered” by Dujmović, Eppstein, Hickingbotham, Morin and Wood in 2022; they
proved the existence of a graph family with the queue number at most 4 but un-
bounded stack number. We give an alternative very short, and still elementary, proof
of the same fact.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-083

1 Introduction
The graph parameters called stack and queue numbers relate to linear layouts (i.e, lin-
ear vertex orderings, usually of additional “nice” properties) of graphs, and have found
numerous applications in theoretical computer science since then. The parameters were
formally introduced by Heath, Leighton, and Rosenberg in [6,7], and their implicit question
of whether the stack number of a graph is bounded in terms of its queue number, or vice
versa, was subsequently emphasized by Dujmović and Wood in [3]. Quite recently, in 2022,
Dujmović, Eppstein, Hickingbotham, Morin and Wood gave in [2] a negative answer to one
half of the question; they proved the existence of a graph family with the queue number
at most 4 but unbounded stack number (while it remains an open problem whether there
exists a family of bounded stack number and unbounded queue number).

We give the basic definitions. Consider a graph G and a strict linear order ≺ on its
vertex set V (G). Two edges xx′, yy′ ∈ E(G) with x ≺ x′ and y ≺ y′ are said to ≺-cross if
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x ≺ y ≺ x′ ≺ y′ or y ≺ x ≺ y′ ≺ x′, and to ≺-nest if x ≺ y ≺ y′ ≺ x′ or y ≺ x ≺ x′ ≺ y′.
See Figure 1. The stack number sn(G) (queue number qn(G)) of a graph G is the minimum
integer k such that there exist a linear order ≺ of V (G) and a colouring of the edges of
G by k colours such that no two edges of the same colour ≺-cross (≺-nest, resp.). The
corresponding order ≺ together with the colouring is called a k-stack (k-queue) layout of G.

a) ≺: x x′y y′ b) ≺: x x′y y′

Figure 1: Edges xx′ and yy′ that (a) ≺-cross, and (b) ≺-nest.

In fact, a notion equal (modulo a negligible technical detail) to the stack number
was known long before as the book thickness (or page number), see Persinger [8] and
Atneosen [1].

To state the main result of [2], we define the following special graph Hn: the vertex set
is V (Hn) = {1, . . . , n}2, and uv ∈ E(Hn) where u = [a, b] ∈ V (Hn) and v = [c, d] ∈ V (Hn),
if and only if |a − c| + |b − d| = 1 or a − c = b − d ∈ {−1, 1}. Note that Hn is the plane
dual of the hexagonal (“honeycomb”) grid, and see an illustration in Figure 2.

a) b) c)

Figure 2: (a) The star S5, (b) the graph H3, and (c) their Cartesian product S5�H3. The
four edge colours illustrate a queue layout for S5�H3.

Recall that Sn is the star with n leaves, and that G1�G2 denotes the Cartesian product
of two graphs G1 and G2. Dujmović et al. [2] showed that, for all integers a, n > 0 and
the Cartesian product G = Sa�Hn, we have qn(G) ≤ 4. In fact, they noted that every Hn

admits a so-called strict 3-queue layout, which “adds up” with a trivial 1-queue layout of
Sa over Cartesian product by Wood [12]. Their main result reads:

Theorem 1 (Dujmović et al. [2]). For every integer s, and for a, n > 0 which are suffi-
ciently large with respect to s, the Cartesian product G := Sa�Hn is of stack number at
least s.

Our contribution is to give a very short simplified proof of Theorem 1 (based in parts
on the ideas from [2], but also eliminating some rather long fragments of the former proof).
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2 Proof of Theorem 1
We will use some classical results, the first two of which are truly folklore.

Proposition 2 (Ramsey [9]). For all integers r, s > 0 there exists R = R(r, s) such that
for any assignment of two colours read and blue to the edges of the complete graph KR,
there is a red clique on r vertices or a blue clique on s vertices in it.

Proposition 3 (Erdős–Szekeres [4]). For given integers r, s > 0, any sequence of distinct
elements of a linearly ordered set of length more than r·s contains an increasing subsequence
of length s+ 1 or a decreasing subsequence of length r + 1.

Proposition 4 (Gale [5]). Consider a dual hexagonal grid Hn as above. For any assign-
ment of two colours to the vertices of Hn, there exists a monochromatic path on n vertices.

Consider for the rest any fixed stack layout of the graph G of Theorem 1, with the linear
order ≺ on the vertex set V (G). Recall that V (G) = {(u, p) : u ∈ V (Sa), p ∈ V (Hn)}.

Lemma 5. Let L be the set of leaves of Sa, and let b = a−m where m = 2n
2−1. There is

a subsequence (u1, . . . , ub) in the set L of length b such that for each p ∈ V (Hn), either
(u1, p) ≺ (u2, p) ≺ . . . ≺ (ub, p), or (u1, p) � (u2, p) � . . . � (ub, p).

Proof. Let V (Hn) = {p1, . . . , pn2} be the vertices of Hn. Start with the permutation
σ1 = (ui[1,1], . . . , ui[1,a1=a]) of L such that (ui[1,1], p1) ≺ . . . ≺ (ui[1,a1], p1). By Proposition 3,
for each j ∈ {2, . . . , n2}, the sequence σj−1 contains a subsequence σj = (ui[j,1], . . . , ui[j,aj ])
such that aj ≥

√
aj−1, and (ui[j,1], pj) ≺ . . . ≺ (ui[j,aj ], pj) or (ui[j,1], pj) � . . . � (ui[j,aj ], pj).

By simple calculus, we get an2 ≥ am1 = b which is the desired outcome.

Let Sb ⊆ Sa be the (specific) substar of Sa defined by the subset of leaves {u1, . . . , ub}
(of Lemma 5). Colour every vertex p ∈ V (Hn) red if (u1, p) ≺ . . . ≺ (ub, p), and colour p
blue otherwise. From this and Proposition 4, we immediately obtain:

Corollary 6. There is a subgraph Q ⊆ Hn, being a path on n vertices, such that, without
loss of generality, (u1, q) ≺ . . . ≺ (ub, q) holds for every vertex q ∈ V (Q).

Define X ⊆ G to be the subgraph induced on the vertex set V (Sb) × V (Q), i.e.,
X = Sb�Q, and denote by R the set of paths Ri ⊆ X induced on {ui} × V (Q) for
i = 1, . . . , b. We extend ≺ to a partial order on R as follows; for Ri, Rj ∈ R, we have
Ri ≺ Rj, if and only if u ≺ w for all u ∈ V (Ri) and w ∈ V (Rj). We say that Ri and Rj are
≺-separated if Ri ≺ Rj or Ri � Rj, and that Ri and Rj are ≺-crossing if there exist edges
e ∈ E(Ri) and f ∈ E(Rj) such that e, f ≺-cross. The following is simple but crucial:

Lemma 7. Every two distinct paths Ri, Rj ∈ R are either ≺-crossing, or ≺-separated.

Proof. Assume the contrary; up to symmetry meaning that all edges of Ri are nested in
some edge e2 = {(uj, q), (uj, q′)} ∈ E(Rj). Then, in particular, e1 = {(ui, q), (ui, q′)} ∈
E(Ri) is nested in e2, and so (uj, q) ≺ (ui, q) and (uj, q

′) � (ui, q
′). This contradicts

Corollary 6.
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Corollary 8. For all integers c, d and n, and for b = |R| sufficiently large with respect
to c, d, we have that R contains at least c pairwise ≺-separated or d pairwise ≺-crossing
paths.

Proof. Imagine a pair of paths {Ri, Rj} ⊆ R coloured red if Ri, Rj are ≺-crossing, and
blue if they are ≺-separated. With respect to Lemma 7, we apply Proposition 2 with b ≥
R(c, d).

We finish as follows.

Proof of Theorem 1. Respecting the above definition of the set of paths R in G, we branch
into the two cases determined by Corollary 8.

Case I. There are c pairwise ≺-separated paths in R.
Without loss of generality, let these paths be R1 ≺ . . . ≺ Rc. For the root t of Sb,
label the n vertices of the set {t} × V (Q) ⊆ V (X) by t1 ≺ . . . ≺ tn. There are two
subcases.

• Rbc/2c ≺ tdn/2e. For each i = 1, . . . ,min(bc/2c, dn/2e), pick an edge of X from
tdn/2e+i−1 to V (Ri) (which exist since Ri hits every copy of Sb in X by the
definition). We have got min(bc/2c, dn/2e) edges in X that pairwise ≺-cross, as
in Figure 3.

R1 R2

. . .
Rbc/2c

tdn/2e tdn/2e+1

. . .
tdn/2e+bc/2c−1 tn

Figure 3: Case I, where Rbc/2c ≺ tdn/2e and dn/2e > bc/2c.

• tdn/2e ≺ Rbc/2c+1 (note that tdn/2e may be “≺-nested” in Rbc/2c). This is sym-
metric to the previous, and we get min(dc/2e, dn/2e) pairwise ≺-crossing edges
in X between vertices of Rbc/2c+1, . . . , Rc and s1, . . . , sdn/2e.

Case II. There are d pairwise ≺-crossing paths in R.
Pick any path R0 out of these d paths. In Z :=

⋃
R∈R,R 6=R0

E(R) there are at least
d− 1 edges which ≺-cross some edge of R0, and so at least (d− 1)/n of them cross
the same edge e ∈ E(R0). Having e = u1u2, u1 ≺ u2, and f = v1v2 ∈ E(X) such
that e and f ≺-cross, we say that v1 is the inside vertex of f if u1 ≺ v1 ≺ u2, and
then v2 is the outside vertex. By the pigeonhole principle, there is a set Z ′ ⊆ Z of
d′ = |Z ′| ≥ (d − 1)/n2 edges ≺-crossing e such that their inside vertices belong to
the same copy of Sb in X.
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The outside vertices of the edges of Z ′ belong to at most two other copies of Sb

in X (determined by a neighbourhood in the path Q), and each is before of after e
in ≺. By the pigeonhole principle again, and without loss of generality, there is a
set Z ′′ ⊆ Z ′ of size |Z ′′| ≥ 1

2
· 1
2
d′ = d′/4, such that also the outside vertices of the

edges of Z ′′ belong to the same copy of Sb in X, and they all lie after e in ≺. See
Figure 4. Moreover, by Corollary 6 (the ordering claimed therein), the edges in Z ′′
must pairwise ≺-cross.

u1 u2

e

t1

Z ′′

t2

Figure 4: Case II, with emphasized edge e, blue parwise-crossing edges of Z ′′, and t1, t2
being two copies of the root of Sb.

To finish the proof, we set n = 2s and a = R(2s, 4n2s+1)m where m = 2n
2−1. Then in

Lemma 5 we get b = R(2s, 4n2s+1), and in Corollary 8 we have c = 2s and d = 4n2s+1.
In Case I, we then obtain at least min(bc/2c, dn/2e) = s edges of X ⊆ G that pairwise
≺-cross. In Case II, it is at least d′/4 = (d− 1)/(4n2) = s such pairwise ≺-crossing edges,
too. Edges that pairwise ≺-cross obviously must receive distinct colours. A valid stack
layout based on ≺ hence needs at least s colours, and since ≺ has been arbitrary for the
graph G, we finally conclude that sn(G) ≥ s.

3 Conclusion
We have provided a short elementary proof of Theorem 1. Although the original proof in [2]
is not very long or difficult, by carefully rearranging the arguments we have succeeded in
eliminating some technical steps of the proof in [2] and, in particular, resolved the case
of pairwise crossing paths in a direct short way. Briefly explaining, our proof skips initial
technical parts of [2] preceding the use of Proposition 3 (Erdős–Szekeres) and readily
applies Proposition 3 and Proposition 4 in a way similar to [2], and then it concludes by
Proposition 2 (Ramsey) in which both outcomes straightforwardly lead to a large set of
pairwise crossing edges, thus avoiding other technical steps needed in [2] mainly at the end
of the arguments.

The presented proof is based on the Bachelor’s thesis of the second author [10,11].
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