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Abstract

We introduce a broad class of stochastic processes on permutations which we
call flip processes. A single step in these processes is given by a local change on a
randomly chosen fixed-sized tuple of the domain. We use the theory of permutons
to describe the typical evolution of any such flip process π0, π1, π2, . . . started from
any initial permutation π0 ∈ Sym(n). More specifically, we construct trajectories
Φ : P × [0,∞) → P in the space of permutons with the property that if π0 is close
to a permuton γ then for any T > 0 with high probability πTn is close to ΦTγ. This
view allows to study various questions inspired by dynamical systems.
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1 Introduction
The theory of permutations offers many exciting structural, extremal and enumerative
questions. For example, research centered around the Stanley–Wilf conjecture asks for the
number of permutations of a given order avoiding a fixed pattern. What all these problems
have in common is that they study static permutations. Following the success of the theory
of dense graph limits, Hoppen, Kohayakawa, Moreira, Ráth, and Sampaio [4] developed a
theory of permutation limits. The corresponding limit objects are called permutons. The
theory of permutation limits allowed new results or streamlined proofs in the above areas
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(see e.g. [5, 3]), as well systematic treatment of many properties permutations coming from
various random models.

There is another — dynamic — line of research of permutations. Much of this line of
research is motivated by data structures, and by analysis of sorting algorithms in particular.
In the dynamic setting, one studies evolution of sequences π0, π1, π2, . . . of permutations
(typically of the same order).

The main contribution of our work is a framework for capturing typical evolutions for a
natural class of randomized local algorithms, which we call flip processes, using the theory
of permutons.

2 Main concepts and results

2.1 Necessary notation

In order to state our results, we need to recall basics of the theory of permutons. All
measure below on [0, 1]2 are tacitly assumed to be Borel. We write λ and λ2 for the
Lebesgue measure on R and on R2, respectively.

A permuton γ is a measure on [0, 1]2 with uniform marginals, that is, for each Borel set
Z ⊂ [0, 1] we have that γ([0, 1]×Z) = γ(Z × [0, 1]) is the Lebesgue measure of Z. Permu-
tons are an extension of permutations through the concept of permutation representation.
Suppose that π ∈ Sym(n) is a permutation of order n. The permuton representation Γπ of
π is a measure defined

Γπ (X) := n · λ2
(
X ∩

n⋃
i=1

[ i−1
n
, i
n
]× [π(i)−1

n
, π(i)

n
]

)

for each X ⊂ [0, 1]2. Then Γπ is indeed a permuton as the fact that each i ∈ [n] appears
exactly once in the domain and exactly once in the range corresponds the uniform marginals
on the x-axis and the y-axis, respectively.

We write P for the set of all permutons. Given two permutons α and β we define their
rectangular distance by

d�(α, β) := sup
0≤x1≤x2≤1,0≤y1≤y2≤1

{|α([x1, x2]× [y1, y2])− β([x1, x2]× [y1, y2])|} . (1)

Three permutons which will appear in the text below are the two-dimensional Lebesgue
measure λ2, the diagonal permuton D, defined by D(Z) = λ{x ∈ [0, 1] : (x, x) ∈ Z} for
Z ⊂ [0, 1]2 Borel, and the antidiagonal permuton A, defined by A(Z) = λ{x ∈ [0, 1] :
(x, 1− x) ∈ Z}.

2.2 Flip processes and permuton trajectories

To motivate our fairly broad class of flip processes, we start with a particular example, a
specific ordering procedure. Suppose that π0 is a permutation of order n ≥ 3. Then in
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Figure 2.1: Five steps of the ordering process of order 3. The different colours indicate
firstly the random choice of the elements and in the subsequent figure the corresponding
reordering.

steps ` = 1, 2, . . . we take a uniform triple of distinct elements of [n], say i1 < i2 < i3. We
take π` to be π`−1, except at positions i1, i2, and i3 and then we shuffle the values π`−1(i1),
π`−1(i2), and π`−1(i3) so that they are in the increasing order. We call this process the
ordering process of order 3. An example is given in Figure 2.1.

Let us now proceed with a general definition. If π ∈ Sym(n) and A ∈
(
[n]
k

)
then

subpermutation of π restricted by A π�A is a permutation on [k] such that for each i, j ∈ [k]
we have that π�A(i) < π�A(j) if and only if for the i-th smallest element iA of A and for
the j-th smallest element jA of A we have π(iA) < π(jB). Next, we introduce a notion of
transplanting a subpermutation ψ ∈ Sym(k) into π on A. This is a permutation π̃ ∈ Sym(n)
such for each i ∈ [n] \ A we have π̃(i) = π(i) and π�A = ψ.

So, the above ordering process can be defined as repeated transplantations of the iden-
tity permutation id3 on randomly selected triples. General flip processes allow the trans-
planted subpermutation to depend on the sampled restricted subpermutation (and this
choice can be a randomized one).

Let k ∈ N. A rule is a stochastic matrix R ∈ [0, 1]Sym(k)×Sym(k). Given an initial
permutation π0 ∈ Sym(n) (where n ≥ k) the flip process with rule R works as follows. In
each step ` = 1, 2, . . ., pick a uniformly random k-tuple A ∈

(
[n]
k

)
. Then pick a permutation

ψ ∈ Sym(k) according to the probability distribution given by R on row π`−1�A and
transplant it into π`−1 on A. The resulting permutation is π`. To summarize, a flip process
with a given rule is a discrete time-homogeneous Markov process π0, π1, π2, . . ..

Suppose that we fix a flip process with a rule R. The main result of our project
states that there is a notion of ‘trajectories’, which are given as a two-variable function
Φ : P × [0,∞) → P (in which we write the second coordinate in the superscript, Φαt for
α ∈ P and t ∈ [0,∞)) which predicts typical behaviour of the flip process R started from
any permutation after linearly many steps (with respect to its order), up to a small error
in the rectangular distance.

Theorem 1. For every k ∈ N and for every permutation flip process R of order k, there
exists a function Φ : P × [0,∞) → P with the following property. For every T > 0,
every n ∈ N and every π0 ∈ Sym(n) we have with probability 1− on(1) for the flip process
π0, π1, . . . with rule R that max

{
d�(Γπi ,Φ

i
n Γπ0) : i ∈ (0, Tn] ∩ N

}
= on(1).

That is, Theorem 1 establishes a correspondence between an analytic deterministic
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object and a discrete stochastic evolution.
Further, we can prove that the trajectories satisfy the following metric conditions for

any α, β ∈ P and s, t ∈ [0,∞):

exp (−Θ(t)) d� (α, β) ≤ d�
(
Φtα,Φtβ

)
≤ exp (Θ(t)) d� (α, β) and , (2)

d�
(
Φsα,Φtα

)
≤ O(|s− t|) . (3)

The upper bound in (2) implies that the evolution of the trajectory depends in a continuous
fashion on the initial condition, and (3) says that it also depends in a continuous fashion
on time. The lower bound in (2) in particular says that two different trajectories do not
ever form a confluence (unless one is a subtrajectory of the other).

2.3 Flip processes as dynamical systems on P

Theorem 1 gives a potential of a comprehensive theory of permutation flip processes, rich-
ness of which reflects both the combinatorial and the dynamical systems facet of the area.
We present several notions that we study. Due to space constraints we state only briefly
and informally some of our results accompanying these notions as well as several open
questions.

The first is a concept of destination. Suppose that R is a flip process and Φ : P ×
[0,∞)→ P are its trajectories. If γ is a permuton for which the limit (in the rectangular
distance) limt→∞Φtγ exists, then we call it the destination of γ, and write dest (γ). For
example, it can be shown that the destination of any permuton in the above ordering
process of order 3 is the diagonal permuton D. For most natural flip processes it appears
that each permuton has a destination but we are also able to construct a flip process and
an initial permuton γ for which limt→∞Φtγ does not exist. More specifically, we are able to
construct a flip process and argue that it contains a periodic trajectory, that is, a permuton
γ and time T0 so that Φtγ = γ for and only for times t that are multiples of T0. It would
be interesting to find other wild types of trajectories. For example, does there exist a flip
process and an initial permuton α whose trajectory oscillates between the diagonal and
the antidiagonal permuton, that is lim inft→∞ d�(Φtα,D) = lim inft→∞ d�(Φtα,A) = 0?

Destinations are connected with the notion of fixed points. For a flip process whose
trajectories are Φ : P × [0,∞) → P, we call a permuton γ ∈ P a fixed point if Φtγ = γ
for all t ≥ 0. It can be shown that if γ is a destination then it is also a fixed point (and
obviously, if it is a fixed point then it is also its own destination). Is it true that every flip
process has at least one fixed point?

Next, we explain the concept of origins. Suppose that t > 0, and α and β are permutons
such that β = Φtα. In that case we write α = Φ−tβ. Let age(β) be the supremum of times
t ≥ 0 for which Φ−tβ exists as a permuton. It can be shown that if age(β) <∞ then there
exists a permuton, denoted by orig (β), for which Φage(β)(orig (β)) = β. We call orig (β)
the origin of β. Another feature of interest is characterizing graphons with positive age.
Indeed, the age of some permutons can be 0 as the example of the antidiagonal permuton
A in the ordering process of any order k ≥ 2 shows. On the positive side, we can show
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that if a permuton is absolutely continuous with respect to the Lebesgue measure and its
Radon–Nikodym derivative is bounded then it is of positive age.

Of course, all the results and questions above would become more tractable if we could,
for a any given flip process and any given initial graphon α and any time t ≥ 0, explicitly
compute the permuton Φtα. This task however involves solving a difficult system of dif-
ferential equations and we were able to carry it out only for flip processes of order 2. Last,
let us mention the question of the uniqueness of the rule. That is, suppose that we have
rules R and Q whose respective trajectories are Φ and Ψ. If Φ = Ψ, does it follow that
R = Q?

Related work: Graph flip processes

Our work is similar to, and was in fact inspired by, the theory of flip processes for graphs,
recently developed in [2]. Let us summarize that project. We write Hk for the family
of graphs on vertex set [k]. A rule R of a flip process of order k is a stochastic matrix
R ∈ [0, 1]Hk×Hk . For an initial graph G0 of order n ≥ k, the flip process with rule R is
a discrete time process (G`)

∞
`=0 of graphs on the vertex set [n] defined as follows. We get

graph G`+1 by sampling an ordered tuple v = (v1, · · · , vk) of distinct vertices and sample
a graph J from distribution RG`[v],∗. We replace G`[v] by J . The main result of [2] is that
there exists trajectories Φ·W : [0,+∞) → W0 with properties analogous to (2) and (3)
such that if T > 0 is a constant and G0 is an initial graph of large order n then with high
probability for each i ∈ N with i ≤ Tn2 the graphon representation Wi of Gi is close to
the trajectory started at the graphon representation W0 of G0 at time i

n2 in the cut norm,

that is, max
{∥∥∥Wi − Φ

i
n2W0

∥∥∥
�

: i ∈ (0, Tn2] ∩ N
}

= o(1).
There are substantial similarities between the proofs of the current permutation project

and [2] in the overall strategy. In particular, the crucial construction of the trajectories is
also based on an idea of a velocity operator (see Section 4). However, there are differences
in technical execution of this overall strategy, which are mostly given by combinatorial
differences between the cut norm distance for graphons and the rectangular distance for
permutons, and of the underlying Banach spaces.1 Also, families of natural and interesting
flip processes seem to be quite different in both cases.2

3 Specific classes of flip processes
We give examples of several classes of flip processes. The purpose of this list is to show
richness of scenarios that can be captured by flip processes and to hint to features that can
be studied in the future. Many of these processes are counterparts to graph flip processes
studied in [1].

1In the graphon case the Banach space of two-variable L∞-functions, and in the permuton case the
Banach space of signed measures as we describe in Section 4.

2Interesting graph flip processes are studied in [1].
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The ordering flip process of order k is given by a rule in which Rψ,idk = 1 and Rψ,ρ = 0
for ρ 6= idk. All trajectories of this flip process converge to the identity permuton. While
this is not the only process with this property, intuitively the speed of convergence to the
identity permuton (which can be defined analogously to [2, Section 5.12]) is the fastest
among all order-k flip processes. The ignorant flip process is a process in which the output
distribution Rψ,∗ does not depend on the input permutation ψ. An example of an ignorant
process is the ordering process of any order. In [1, Section 4] ‘ignorant graph processes’
which have an analogous definition are studied. In the graph case, the trajectories can
be explicitly described (see [1, Proposition 4.2]), however in the permutation setting this
seems to be much more complicated. The diagonal reversing flip process of order k is a
process designed to swap the order of the permutation in a particular, slow way. It outputs
anti-diagonal for input being diagonal and in other cases does not change the permutation.
For k = 2, it is a fatalistic flip process and the trajectories converge to the anti-diagonal
permuton. For k > 2 the behaviour is more interesting. In the complementing flip process
of order k, each input permutation is replaced by its reversal, that is Rψ,ψ = 1 where for
each ψ ∈ Sym(k), ψ is defined by ψ(i) := k+ 1−ψ(i). All the trajectories converge to the
Lebesgue measure λ2.

4 Proof of Theorem 1
We sketch the proof of Theorem 1, deferring other results announced in Section 2.3 for the
full version of the paper. That is, for a flip process R of order k, we first need to construct
the trajectories Φ : P × [0,∞) → P, and then we need to prove that a flip process
started with π0 stays with high probability within a thin sausage around (ΦtΓπ0)t≥0. Not
suprisingly, our construction is tailored with respect to the latter property. More precisely,
we work in the Banach space M of finite signed Borel measures on [0, 1]2 whose marginals
are arbitrary multiples of the 1-dimensional Lebesgue measure, equipped with the distance
d�. We come up with a velocity operator ∇ : M → M whose defining formula (5) is
explained below. We then require that for α ∈ P and t ≥ 0 we have the following Banach-
space valued equation

d

dt
Φtα = ∇Φtα (differential form), or equivalently Φtα = α +

∫ t

0

∇Φτα dτ (integral form).

(4)
Using certain favorable properties of (4) it can be shown using the theory of Banach-space
valued differential equations that it has a unique solution on the entire interval [0,∞).

We now turn to cooking up the defining formula for ∇ . Recall that in Wormald’s
method of differential equation [6], one cooks up real-valued functions whose derivatives
are idealizations of expected changes of tracked combinatorial parameters. Our idea is the
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same, except our derivatives are M-valued. That is, for α ∈M we set

∇ (α)(Z) =
∑

ω∈Sym(k)

∑
i∈[k]

−t(ω, Z, i;α) +
∑

ω̃∈Sym(k)

Rω,ω̃ · t(ω  ω̃, Z, i;α)

 , (5)

for each Borel Z ⊂ [0, 1]2. Let us explain the motivation behind the quantities t(ω, Z, i;α)
and t(ω  ω̃, Z, i;α), which we do under the assumption that α is a permuton.3 The
number t(ω, Z, i;α) is the probability that when sampling4 k points from α, we get a
permutation ω and further the i-th leftmost point falls in Z. Likewise, t(ω  ω̃, Z, i;α) is
the probability that when sampling k points from α, we get a permutation ω and further,
after swapping the y-coordinates of the sampled points from ω to ω̃, the i-th leftmost point
falls in Z. The corresponding formula (valid again for general α ∈ M) for t(ω, Z, i;α) is
(writing α⊗k for the k-th power of α)

t(ω, Z, i;α) =k! · α⊗k
({

(x1, y1, . . . , xk, yk) ∈ [0, 1]2k : x1 < . . . < xk and (xi, yi) ∈ Z and

for all `, j ∈ [k] we have y` < yj if and only if ω(`) < ω(j)
})

,

and a similar but more complicated formula can be written for t(ω  ω̃, Z, i;α).
Having defined the trajectories Φ, we need to prove that a flip process started with a

permutation π0 stays within a thin sausage around (ΦtΓπ0)t≥0. Actually, we will only prove
this for t small. Indeed, if we can prove that with high probability πtn is close to ΦtΓπ0 ,
then we can repeat this argument also starting with permutation π̂0 := πtn and get that
π̂tn = π2tn is close to ΦtΓπ̂0 ≈ Φ2tΓπ0 , and more generally, that for any constant ` ∈ N,
with high probability π`tn is close to Φ`tΓπ0 , as is needed. (Times between (` − 1)tn and
`tn can be dealt with easily as well.)

So, for t > 0 small we use Taylor series approximation of order 1, that is ΦtΓπ0 ≈
Γπ0 + t · ∇ Γπ0 . Recalling that our distance is given by (1), we hence need to prove that
with high probability for each 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1 the quantity

|{i ∈ [n] ∩ [x1n, x2n] : πtn(i) ∈ [y1n, y2n]}| − |{i ∈ [n] ∩ [x1n, x2n] : π0(i) ∈ [y1n, y2n]}|

is approximately equal to n · t · ∇ Γπ0([x1, x2]× [x2, y2]). This can be proved using concen-
tration inequalities, and making use of the fact that t(ω, Z, i;α) and t(ω  ω̃, Z, i;α) were
devised exactly to capture rates of deletions or insertions of points from a permutation in
a single step from particular locations.
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