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Abstract

Motivated by the Polynomial Freiman-Ruzsa (PFR) Conjecture, we develop a
theory of locality in sumsets, with several applications to John-type approximation
and stability of sets with small doubling. One highlight shows that if A C Z with
|A+ Al < (1—¢€)29 4| is non-degenerate then A is covered by O(2%) translates of a d-
dimensional generalised arithmetic progression (d-GAP) P with |P| < Og4(|A]); thus
we obtain one of the polynomial bounds required by PFR, under the non-degeneracy
assumption that A is not efliciently covered by Og4 (1) translates of a (d — 1)-GAP.

We also prove a stability result showing for any e, > 0 that if A C Z with
|A + A] < (2 — €)2¢]A4] is non-degenerate then some A’ C A with [4’] > (1 — )|A]
is efficiently covered by either a (d + 1)-GAP or O,(1) translates of a d-GAP. This
‘dimension-free’ bound for approximate covering makes for a surprising contrast with
exact covering, where the required number of translates not only grows with d, but
does so exponentially. Another highlight shows that if A C Z is non-degenerate with
|A+ A] < (294 0)|A] and £ < 0.1-2% then A is covered by £+ 1 translates of a d-GAP
P with |P| < Og4(|A]); this is tight, in that £ + 1 cannot be replaced by any smaller
number.

The above results also hold for A ¢ RY, replacing GAPs by a suitable common
generalisation of GAPs and convex bodies, which we call generalised convex pro-
gressions. In this setting the non-degeneracy condition holds automatically, so we
obtain essentially optimal bounds with no additional assumption on A. Here we
show that if A C R¥ satisfies |[434| < (1 + §)|A| with & € (0,1), then 34’ C A with
|A’| > (1 —10)|A]| so that | co(A’)| < Op1-s(|A|). This is a dimensionally independent
sharp stability result for the Brunn-Minkowski inequality for equal sets, which hints
towards a possible analogue for the Prékopa-Leindler inequality.
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These results are all deduced from a unifying theory, in which we introduce a
new intrinsic structural approximation of any set, which we call the ‘additive hull’,
and develop its theory via a refinement of Freiman’s theorem with additional separa-
tion properties. A further application that will be published separately is a proof of
Ruzsa’s Discrete Brunn-Minkowski Conjecture [vHKT23].

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-079

1 Introduction

A foundational result in Additive Combinatorics is Freiman’s Theorem [Fre59| that any
subset A of integers with bounded doubling is a dense subset of a generalised arithmetic
progression (GAP) P of bounded dimension (see the book of Tao and Vu [TV06| for def-
initions and background). This gives a satisfactory qualitative description of A: it can
be approximated by some P belonging to a simple class of sets with bounded doubling.
However, the doubling of P may be much larger than that of A, so the quest for a more
quantitative version of Freiman’s Theorem has been a major driving force in the devel-
opment of Additive Combinatorics. A little thought reveals that one must allow P to
come from a broader class of sets than just GAPs. One natural attempt is to approximate
A by sets X + P with |X| bounded, i.e. the union of a bounded number of translates
of P. One might hope to find a such an approximation with polynomial bounds, i.e. if
|A + A < e9@|A| then we could find such X, P with dim(P) = O(d), |X| < ¢°@ and
|X + P| < e9@|A|. However, an example of Lovett and Regev |[LR17| shows that this
is not always possible. Improving the bounds in Freiman’s theorem has been the subject
of a rich body of research [Ruz94, Bil99, Cha02, GT06, San08, Sch11]. The best known
bounds, due to Sanders [San12|, have dim(P) and log(|X + P|/|A|) about O(d®).

The Polynomial Freiman-Ruzsa (PFR) Conjecture (see |Gre07|) attempts to approx-
imate by translates of a convex progression, i.e. a set P of the form ¢(C N Z*) for some
convex set C' C R¥ and linear map ¢ : Z¥ — Z, for which polynomial bounds may be true.
The conjecture states that if |A + A| < e?@|A| then one can find such P with k = O(d)
and |P| < e@|A| such that A C X + P for some X with |X| < ¢9@. Below we will
describe three perspectives on the PFR Conjecture that provide a thematic overview of
our results; these are (1) John-type approximation, (2) Stability, (3) Locality. The third
theme of locality is our primary focus, i.e. most of the technical work goes into developing
the theory of locality, which is then used to deduce the results discussed within the first
two themes. Our results hold both for the discrete setting A C Z considered in PFR and
the continuous setting A C R*. For now we will continue to focus on the discrete setting
(in some sense the hardest case; we achieve better bounds in the continuous setting).

Our first perspective interprets PFR as a John-type approximation. In general terms, a
John-type theorem says that any object in some class is approximated efficiently (i.e. up to
some constant factor) by some object from some simpler class. Some examples are John’s
Theorem approximating convex bodies by ellipsoids, Freiman’s Theorem approximating
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sets of small doubling by GAPs, and a theorem of Tao and Vu [TV08] approximating
convex progressions by GAPs.

Theme 1: John-type approximation. One question that we address is the existence
of John-type approximations P for sets of bounded doubling A. E.g. if A C Z is non-
degenerate with |A + A| < (2¢ + ()| A| and ¢ < 0.1 - 2¢ we show that A is covered by £ + 1
translates of a d-GAP P with |P| < O4(]A|). Here £+ 1 translates is optimal (as shown by
adding ¢ scattered points to a d-GAP), so in the sense of John-type approximation we have
a precise characterisation of such sets A. We also show (see Theorem 1.5) that if A C Z
with |A + A| < (1 — €)2%A| is non-degenerate then A is contained in O(29) translates
of a d-dimensional convex progression P with |P| < Og(]A]); thus we obtain one of the
polynomial bounds required by PFR.

Our second perspective sees PFR as a stability statement. In general terms, if an object
in some class is close to maximising some function on the class, then it must be structurally
close to some extremal example. The possible meanings of ‘structurally close’ are nicely
expressed by terminology of Tao: we speak of 1%, 99% or 100% stability according to
whether we approximate some constant fraction (1%), all bar some constant fraction (99%),
or everything (100%). For sets of small doubling, stability results are only known when
the doubling is quite close to the minimum possible, such as the celebrated Freiman 3k —4
Theorem (see |[Fre59]) and various results (described below) for ‘non-degenerate’ A in R*
or ZF with |A + A] < (2% + 6)|A| for small §. Ruzsa’s Covering Lemma (see e.g. [Ruz99))
converts any 1% stability theorem into a 100% stability theorem. However, this argument
is quantitatively weak, so we require an alternative approach for optimal bounds.

Theme 2: Stability. We approach 100% stability via 99% stability, i.e. we first seek a
structural description for almost all of A, and then use it to deduce the remaining structure.
This approach is well-known in Extremal Combinatorics (the ‘stability method’), but we are
not aware of applications to Freiman’s Theorem. Our 99% stability result (see Theorem 1.6)
shows for any €, > 0 that if A C Z with |A + A] < (2 — €)2%A] is non-degenerate then
some A" C A with |A’'| > (1 —a«)|A| is efficiently covered by either a (d+1)-GAP or O, ,(1)
translates of a d-GAP. This ‘dimension-free’ bound for approximate covering makes for a
surprising contrast with exact covering, where the required number of translates not only
grows with d, but does so exponentially.

Our third perspective on PFR sees it as describing the locality of A. We think of | X| as
the number of locations for A, taking the view that elements of the same convex progression
are close additively, even though they need not be close metrically. This perspective is
particularly clarifying for the continuous setting of A C R¥. Here the classical Brunn-
Minkowski inequality shows that! |4+ A| > 2*| A, with equality if and only if A is convex
up to a null set. There is a substantial literature on A C R* with |A + A| < (2% + §)|A|
for small § > 0. For such A, Christ [Chr12a| showed that the convex hull co(A) satisfies
|co(A)| < (14 €(0))|A|, where €(6) — 0 as 6 — 0. Improvements were obtained by Figalli
and Jerison [FJ15, FJ21|, recently culminating in a sharp stability result with optimal

1For now we use | - | notation for both (discrete) cardinality and (continuous) measure, but for clarity
later we use | - | for measure and #(+) for cardinality.
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parameters by van Hintum, Spink and Tiba [vHST22|. Thus for small § the locality of A
is simply its convex hull, but for larger ¢ the picture becomes more complicated.

Theme 3: Locality. A natural starting point is to consider A C R* with |A + A| <
(2% +§)| A| and ask how large 6 > 0 may be for us to still efficiently cover A by a convex set.
This is clearly impossible for § > 1: consider a convex set and add one faraway point. Our
general theory shows that the threshold is exactly at 1, i.e. if § < 1 then |co(A)| < Ok(|A]).
We have a simple proof for this case, which will be published separately in [vHK23b|. As §
increases we can efficiently cover A by translates of a convex set; moreover, while § < 0.1-2F
we can do so with 0 + 1 translates, which is optimal (similarly to the result in Z mentioned
above; both are subsumed in a more general picture). However, when & reaches 2%, any
fixed number of translates of a convex set will not suffice, as A may be of the form X + P
where P is convex and X is an AP.

Generalised convex progressions. Hence, we introduce a common generalisation of con-
vex progressions and GAPs: a convez (k,d)-progression is a set P = ¢(C N (RF x Z%)),
where C' C R¥*4 is convex and ¢ : R¥*¢ — RF is a linear map. In Theorem 1.4 we consider
non-degenerate A C R¥ with |A + A| < (284 + ()| A] for d, ¢ > 0 and find an efficient cov-
ering of A by X + P, where P is a convex (k, d)-progression and | X]| is tightly controlled
in terms of ¢; in particular, for ¢ < 0.1 - 2*7¢ we obtain the optimal bound |X| < ¢ + 1.
Setting d = 0 recovers our results discussed above for A C R¥. We will also see that the
results in Z follow from those in R. Thus in our general setting we can still think of | X|
as measuring locality, provided that we think of elements of the same generalised convex
progression as being close additively, if not metrically.

In the next subsection we introduce notation that is used to formally develop the above
concepts and state our precise results during the remainder of this introduction. These
are organised by subsection according to our main theme of locality, covering the results
discussed above, and the following further results.

e For non-degenerate A C R* with |A + A| < (24 + §)|A| where § € (0,1) we
find a convex (k,d)-progression P with |P \ A| < Oga4(6|A|) (see Theorem 1.9).
Setting d = 0 recovers the previously mentioned sharp stability result of [vHST22]
for A C R¥, whereas setting & = 0 recovers a sharp stability result for non-degenerate
A C Z% by the same authors [vHST23a].

e We obtain a very precise structural description of sets A C R in the line with doubling
less than 4 (see Theorem 1.8).

1.1 Overview and notation

The following generalised notion of convex hull will play a crucial role throughout the
paper. For A C R* we write co?k’d(A) = X + P, where P is a proper convex (k,d)-
progression and #X < t, choosing X and P so that A C X + P and | X + P| is minimal,
we fix an arbitrary choice if X + P is not unique. In some cases we will omit k,d if d =0
and t if t = 1, e.g. co(X) should be understood as co]fk’o(X ), where k is the dimension of

the ambient space for X, so that it coincides with the common notion of the convex hull.
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We also require the closely related notion gapR d(A), defined as a minimum volume set
X + P+ @ containing A such that #X <t, P is a proper d-GAP and @ is a parallelotope.

This is roughly equivalent to the variant sco]R d(A) defined exactly as Co]Fk’d(A) but impos—
ing the symmetry requirement P = —P. Indeed, | co, R¥,d ( )| < ]scot YA < |gap]R 44)]
is clear, and we will show that | gap?k’d(Aﬂ = Oux(] SCOF “@(A)]). Most results in this paper
will be stated using gaplfk’d, are equivalent to the corresponding statement using sco?k’d,

and imply the Corresponding statement using Cofk’d. However, for some very precise state-
ments we require cot b

To state our results in Z, let (:oZ o scot ¢ and gapt “ be the corresponding functions for
subsets of Z, replacing ‘convex (k, d)- progressmn by ‘convex d-progression’. To be precise,
cotZd(A) = X + P where P is a convex d-progression and #X < ¢, choosing X and P
so that A C X + P and #(X + P) minimal. Analogously define sco”%(A) and gap’*(A)
with the additional requirement that P is origin symmetric and a generalised arithmetic
progression, respectively. Intuitively, throughout the paper we think of k as continuous

RE d
dimension’ and d as ‘discrete dimension’. To stress this connection we write cot “ for coy,

and co!” 04 for CoZ ¢
As further illustrations of this notation we can restate Freiman’s Theorem and PFR as

follows.

Freiman’s Theorem. If ACZ with #(A+ A) < K#A,
then # (COOOOK > < Ok (#A).
PFR. If A C Z with #(A+ A) < D44,

then # (COOOO(d)d)( )) O DA

Many of our theorems include a non-degeneracy condition which should be interpreted
as follows

# (2apGl () (A)) = Que#A) = Vd,€,3C,c: # (gapl® ' (4) = C#4, (1)

i.e. there is no collection of few (¢ depending only on d, and ) translates of a d — 1
dimensional generalized arithmetic progression covering A efficiently (exceeding the size of
A by at most a factor C' depending only on d and ¢&).

We will state our results in the following subsections according to the theme of locality,
i.e. with respect to the bounds on the parameter ¢ in coftc ’d(A). A rough summary of their
contents is as follows:

e A big part of the set is in one place.
e The entire set is in few places.

e Almost all of the set is in a constant number of places.
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e Sets in the line with doubling less than 4 are almost convex.
e A sharp doubling condition for almost convexity.

The theory of sumsets has been developed in several groups. Particular attention has
been given to the continuous setting of R* (e.g. [FMP09, FMP10, Chrl2a, FJ15, FJ17,
FJ21, vHST23c, vHST22]) and to the discrete setting of Z (e.g. [Fre59, Ruz94, Bil99,
Cha02, GT06, San08, Sch1l|). In the context of this paper, the setting does not make
much difference to our results, so although we state some results below for Z, for the
proofs we will generally prefer to work in R*. This is justified as (a) the proofs are the
same modulo the theory of the additive hull, and (b) the results in Z follow from the results
in R via the following proposition.

Proposition 1.1. For any A C Z and d,t € N there is € = ¢(A,d,t) > 0 so that B :=
At [=e,e] C R has |gap;(B)| = Ou (e# (2an?(4)) ).

1.2 A big part of the set is in one place

We start with the continuous setting of R¥, where we obtain a clean unified formulation of
the 1% stability phenomenon to be discussed in this subsection (a big part in one place) and
as 0 — 0 the 99% stability phenomenon (for which we will describe sharper results below).
Combining 1% stability with Ruzsa covering one obtains 100% stability (for which we will
also describe sharper results below). Previous stability results for the Brunn-Minkowski
inequality only applied for much smaller §; in particular, we are not aware of any previous
results of this kind where d does not decrease with the dimension.

Theorem 1.2. Let A C R* with |232| < (1 + 6)|A|, where 6 € (0,1). Then there eists
A’ C A with |A’) > (1 — min{d,6*(1 + O(8)) })|A| and | co(A")] < O1-5x(A]).

Since the size of A’ is also independent of the dimension, this result is closely related
to the stability question of the Prékopa-Leindler inequality for equal functions, which can
be seen as a dimensionally independent version of Brunn-Minkowski. We expand on this
connection and formulate a conjectured extension of Theorem 1.2 in [vHK23a, Section
11.1].

Now we consider the integer setting, where the Freiman-Bilu theorem [Bil99| shows
that for sets with small doubling a large part of the set is contained in a small GAP of low
dimension. A quantitative version of Green and Tao |GT06] shows that for A C Z with
#(A+ A) <242 — €)#A there exists some A’ C A with # (gap”?(A’)) < #A and

#A > exp (—O(8%d°)) PPV HA,

With the following result we establish a bound on #A’ that is optimal up to lower order
terms, at the cost of a non-degeneracy assumption and relaxing the bound on # gap®?(A’)
in the spirit of our John-type theme. We emphasise that our bound on #A’ does not
depend on the dimension.



Locality in Sumsets n74

Theorem 1.3. Fiz f > 0. Suppose A C Z with #(A + A) < 24(1 + 6)#A, where § €
(0,1). If # <gap%i;;(l)(z4)) > Qqs5(#A) then there exists A' C A with # (gap®(A')) <
Os.a(#A) and
#(A\ A
#A
The above results are sharp up to lower order terms both as 6 — 0 for large k£ and
as 0 — 1. For § — 0, consider the union of two homothetic convex sets of volumes §°
and 1 — §%; for 6 — 1 consider an arithmetic progression of ﬁ equal convex sets. The
second example suggests a k + 1 dimensional convex structure, which we indeed establish
in Section 1.4.

< min {(1 + 3)4, 6% + 606>} .

1.3 The entire set is in few places

Now we consider the 100% stability problem: what is the maximum ‘locality’ for given
doubling? Our fundamental example is a GAP together with some scattered points, i.e.
A= PUS CZ, where P is a proper d-dimensional GAP and #S = {. Then #(A+ A) <
(24 + £)#A and A has locality £ + 1.

The following result shows for non-degenerate A that this example is exactly sharp for
a large range of ¢ and asymptotically sharp when 2¢ — £ > 242 We remark that even
the much weaker bound of O(2¢) for the locality is already sufficient to cover A by X + P
with doubling O(2%9), i.e. our John-type approximation only loses a square in the doubling,
whereas the PFR setting allows any polynomial loss.

Theorem 1.4. Let ¢ € (0,2%) and A C Z with #(A+A) < (294+-0)# A and # (gapdo’d(ll)(A)) >
Qq(#A). Then # <gap2;d(A)> < Oge(#A), where

(41 for 0 e N if £ <0.1-2 orif¢ <0.315-2% and d > 13,
¢ < e(1+0(3ﬁ>> if0.1«2d§£§(1—ﬁ>2d,
(14 o0(1)%t where € = 2255 and o(1) = 0 as € — 0.

The final bound in Theorem 1.4 gives an asymptotically sharp result for the limiting case

2236 — 0, i.e. as the doubling approaches 27!, Here the above fundamental example

breaks down and a new example takes over, which can be thought of as a cone over a GAP;
intuitively, this describes the ‘most d-dimensional’ (d + 1)-dimensional construction.

The above results are very sharp for non-degenerate sets, but to make further progress
towards PFR we need to weaken the non-degeneracy condition. Our next result takes a
step in this direction, but its applicability is limited by the double-exponential dependence
on d'.

Theorem 1.5. Let A C Z with #(A + A) < 294 A and d' < d. If # (gapgj(—g’(A)> >
Qq(#A) then

€ =

0.d B
# (gap2dexpexp(0(d’))(A)> - Od(#A)
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1.4 Almost all of the set is in a constant number of places

Now we consider 99% stability. Here we find that the number of locations can be bounded
by a constant independently of the doubling. This is a remarkable contrast with the 100%
stability problem, for which we needed an exponential number of locations to cover the
set unless it has close to the minimum possible doubling. Our fundamental example had
many scattered points but essentially all of the mass of the set in one location, which
hints that one should be able to do much better if one can discard a small part of the set.
Furthermore, the second example that takes over as the doubling approaches 2¢*! is highly
structured so that co®@*1(A) is small. The following shows that any non-degenerate set is
approximately described by one of these two configurations: it is concentrated in a single
(d + 1)-progression or few d-progressions, where ‘few’ depends only on the approximation
accuracy, not on d.

Theorem 1.6. For any o, e > 0 and A C Z with #(A+ A) < 242 —€)#A there is A’ C A
with #A" > (1 — a)#A and

min { # (sapfi}(4)) . # (2apgl, o (4)) # (82007 (4)) } < Ogcal#A).

Hence, we can always find arithmetic structure in an absolute constant fraction of the
set.

Corollary 1.7. Suppose A C 7Z with # (A+ A) < 242 — ¢)#A and #gap%ja;(fl) >
Que(#A). Then there is A C A with #A” > m#/l and # (gapo’dH(A’)) < Oge(#A').

1.5 Linear stability results

We additionally prove the following results. For more details and background refer to
[VHK23a].

We prove the following extension of Freiman’s 3k —4 theorem, characterizing sets A C R
with |A + A| < 4|A|. Let ap,(A) be a minimum size set containing A that is an AP of ¢
intervals whose lengths are in arithmetic progression.

Theorem 1.8. There is an absolute constant C' > 0 such that the following holds. Suppose
A C R with |A+ A| < 4]|A| and | co(A)| > C|A|. Let t be minimal so that | coi(A)| < 2|A|,
and let § := % — (4 —2/t). Then |co™ (A)\ Al < max{150,4t>}5|A|. Moreover, if
§ < (2t)72 then |ap,(A) \ A < 100td|A|.

We extend the main results from [vHST22, vHST23a| to establish the optimal bound
on the doubling for which a set needs to be approximately convex. An independent proof
of the corollary is published separately in [vHK23b|.

Theorem 1.9. For anyd € N, v,¢ > 0,6 € (0,1—¢), if A C Z with #(A+A) < (2¢44+5)#A
and # (aplss ! ) (4)) = Qa(#A) then #(co(A)\ A)/#(A) < Oaly + ).

Corollary 1.10. If A C R” satisfies |A+ A| = (2% + 6)|A| with § < 1 then |co(A) \ A| <
Ok(9)[A].
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