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Abstract

In [13], Kahn gave the strongest possible, affirmative, answer to Shamir’s prob-
lem, which had been open since the late 1970s: Let r > 3 and let n be divisible by
r. Then, in the random r-uniform hypergraph process on n vertices, as soon as the
last isolated vertex disappears, a perfect matching emerges. In the present work, we
prove the analogue of this result for clique factors in the random graph process: At
the time that the last vertex joins a copy of the complete graph Kr, the random graph
process contains a Kr-factor. Our proof draws on a novel sequence of couplings which
embeds the random hypergraph process into the cliques of the random graph process.
An analogous result is proved for clique factors in the s-uniform hypergraph process
(s > 3).
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1 Introduction
When can we cover the vertices of a graph with disjoint isomorphic copies of a small
subgraph? The study of this question goes back at least to 1891, when Julius Petersen, in
his Theorie der regulären graphs [16], provided sufficient conditions for a graph to contain a
perfect matching, that is, a cover of the vertices with pairwise disjoint edges. Let Hr(n, π)
be the random r-uniform hypergraph on the vertex set V = [n] where each of the Nr =

(
n
r

)
possible hyperedges of size r is present independently with probability π. The binomial
random graph in this notation is then G(n, p) = H2(n, p). In 1979, Shamir asked the
following natural question, as reported by Erdős [6]:

Question 1.1. How large does π = π(n) need to be for Hr(n, π) to contain a perfect
matching whp1, that is, a collection of n/r vertex-disjoint hyperedges2?

A closely related question, posed by Ruciński [18] and Alon and Yuster [1], is:

Question 1.2. For which p = p(n) does the random graph G(n, p) contain a Kr-factor
whp?

That is, for which p(n) does G(n, p) contain a collection of n/r vertex-disjoint copies of
Kr? In the following, we will also call a copy ofKr an r-clique. For r = 2, the two questions
are the same — and thanks to Erdős and Rényi [5], we have known since 1966 that there
is a sharp threshold3 for the existence of a perfect matching at p0 = logn

n
. The lower bound

for this is immediate: At p = (1 − ε)p0, some vertices in the graph are still isolated, so
there cannot be a perfect matching. The upper bound relies on Tutte’s Theorem, for which
there is no known hypergraph analogue.

On the other hand, for the case r > 3, these questions remained some of the most promi-
nent open problems in random (hyper-)graph theory. Initial results on perfect matchings in
random r-uniform hypergraphs were obtained by Schmidt and Shamir [19] - guaranteeing
a perfect matching for hypergraphs with expected degree ω(

√
n), with improvements by

Frieze and Janson [7] to ω(n
1
3 ) and further to ω

(
n1/(5+2/(r−1))) by Kim [14]. For clique

factors, even determining the special case of triangle factors proved hard, despite partial
results by Alon and Yuster [1], Ruciński [18] and Krivelevich [15]. Finally, both questions
were jointly resolved up to constant factors by Johansson, Kahn and Vu in their seminal
paper [11]. It had long been assumed that, as in the case r = 2, the main obstacle in finding
a perfect matching in Hr(n, π) were isolated vertices, that is, vertices not contained in any
hyperedge. In the clique factor setting, the obstacle corresponding to isolated vertices are
vertices not contained in any r-clique. Let

π0 = π0(r) =
log n(
n−1
r−1

) and p0 = p0(r) = π
1/(r2)
0 ;

1We say that a sequence of events (En)n>1 holds with high probability (whp) if P (En)→ 1 as n→∞.
2Here and in the following, we implicitly assume n ∈ rZ+ whenever necessary.
3Recall that a sequence p∗ = p∗(n) is called a sharp threshold for a graph property P, if for all fixed

ε > 0 we have G(n, p) /∈ P whp if p(n) < (1− ε)p∗(n), and G(n, p) ∈ P whp if p(n) > (1 + ε)p∗(n). For a
(weak) threshold, the conditions become p = o(p∗) and p∗ = o(p), respectively.
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then π0 and p0 are known to be sharp thresholds for the properties ‘minimum degree at
least 1’ in Hr(n, π) and ‘every vertex is covered by an r-clique’ in G(n, p), respectively
[4, 10]. Johansson, Kahn and Vu [11] showed that π0 and p0 are indeed (weak) thresholds
for the existence of a perfect matching in Hr(n, π) and for the existence of an r-clique
factor in G(n, p), respectively.

Recently, Kahn [12] proved that π0 is in fact a sharp threshold for the existence of a
perfect matching in Hr(n, π). Indeed, he was able to confirm the conjecture that isolated
vertices are essentially the only obstacle, and thereby answer Shamir’s question, in the
strongest possible sense:

Let h1, . . . ,hNr be a uniformly random order of the hyperedges in
(
V
r

)
, then the random

r-uniform hypergraph process (Hr
t )
Nr
t=0 is given by Hr

t = {h1, . . . ,ht}. Let

TH = min{t : Hr
t has no isolated vertices}

be the hyperedge cover hitting time, i.e., the time t where the last isolated vertex ‘disap-
pears’ by being included in a hyperedge. In the graph case r = 2, Bollobás and Thomason
[2] proved in 1985 that this hitting time whp coincides with the hitting time for a perfect
matching. Kahn [13] showed that this is indeed also the case when r > 3:

Theorem 1.3 ([13]). Let r > 3 and n ∈ rZ+, then whp Hr
TH

has a perfect matching.

Can we get a similarly strong answer to the clique factor question? For r = 3, the
question whether a triangle factor exists in the random graph process as soon as every
vertex is covered by a triangle was attributed to Erdős and Spencer in [3, §5.4]. This
question seems much harder than its Shamir counterpart because, unlike hyperedges in
the random hypergraph, cliques do not appear independently of each other. However, for
sharp thresholds it has indeed been possible to reduce the clique factor problem to the
perfect matching problem, using the following coupling result of Riordan (for r > 4) and
the first author (for r = 3):

Theorem 1.4 ([8, 17]). Let r > 3. There are constants ε(r), δ(r) > 0 such that, for any
p = p(n) 6 n−2/r+ε, letting π = p(

r
2)(1−n−δ), we may couple the random graph G = G(n, p)

with the random r-uniform hypergraph H = Hr(n, π) so that, whp, for every hyperedge in
H there is a copy of Kr in G on the same vertex set.4

Together with Kahn’s sharp threshold result [12], the following corollary is immediate.

Corollary 1.5. There is a sharp threshold for the existence of a Kr-factor at p0.

In the same spirit, we wish to transfer Kahn’s hitting time theorem, Theorem 1.3,
directly to the random graph process setting, showing its clique factor analogue. Such
a derivation of the factor result from its Shamir counterpart was believed to be out of
reach — Kahn remarks in [12] that ‘there seems little chance of anything analogous’ for

4In [8, 17], Theorem 1.4 was given with an unspecified o(1)-term in place of n−δ; the formulation above
is Remark 4 in [17] and in the case r = 3, an unnumbered remark near the end of [8].
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Theorem 1.3, and in [13] that the connection between the factor version and the Shamir
version of the result ‘seems unlikely to extend to’ Theorem 1.3. One important reason for
this is that the original coupling provides merely a one-way bound. While it guarantees a
copy of Kr in G = G(n, p) on the same vertex set for every h in H = Hr(n, π), we cannot,
as observed by Riordan [17], expect to find a corresponding hyperedge of H for every Kr

in G, since there we will find roughly n2r−2p2(
r
2)−1 pairs of Kr sharing two vertices, which

is much larger than the expected number n2r−2π2 of pairs of hyperedges of H sharing
two vertices. A second obstacle is that whenever we do have such a pair of overlapping
hyperedges in H, the corresponding cliques in G will not appear independently of each
other in the associated random graph process — for example the shared edge could be the
last to appear, and then those cliques emerge simultaneously in the random graph process.
And indeed, extra cliques and pairs of overlapping cliques do pose a challenge, but they
will not appear ‘near’ those candidate vertices which may be among the last vertices to be
covered by cliques.

Now, let (Gt)
N2
t=0 be the random graph process, which is the random r-uniform hyper-

graph process for r = 2. Denote the hitting time of an r-clique cover by

TG = min{t : every vertex in Gt is contained in at least one r-clique}.

Then, to apply Kahn’s hitting time result to the clique factor setting, we need to find a
copy of Hr

TH
within the cliques of GTG . That this can be achieved is our main result:

Theorem 1.6. Let r > 3. We may couple the random graph process (Gt)
N2
t=0 with the

random r-uniform hypergraph process (Hr
t )
Nr
t=0 so that, whp, for every hyperedge in Hr

TH

there is a clique in GTG on the same vertex set. In particular, whp GTG contains a Kr-
factor.

What is more, a simplification of the proof of Theorem 1.6 yields a corresponding result
forK(s)

r -factors. For this, let r > s > 3 andK(s)
r denote the complete s-uniform hypergraph

on r vertices. Let (Gt)
Ns
t=1 = (Hs

t )
Ns
t=1 and denote the hitting time of a K(s)

r -cover by TG.
Then:

Theorem 1.7. Let r > s > 3. We may couple the stopped random r-uniform hypergraph
process HTH and the stopped random s-uniform hypergraph process GTG so that, whp, for
every hyperedge in HTH there is copy of K(s)

r in GTG on the same vertex set. In particular,
whp GTG has a K(s)

r -factor.

2 Preliminaries
In the remainder, we fix r > 3 and suppress the dependence on r writing Ht instead of Hr

t ,
etc. Let M = Nr =

(
n
r

)
and N = N2 =

(
n
2

)
. By an r-uniform hypergraph H on the vertex

set V = [n], we mean a subset of
(
V
r

)
, the set of all r-subsets of V . That is, we will use

H as a set (of sets of vertices of size r) for convenient notation. For a hypergraph H on
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the vertex set V = [n] and v ∈ [n], we use d(v) to denote the degree of v in H. In a graph
G, an r-clique is a clique on r vertices. We denote by cl(G) the set of vertex sets from(
V
r

)
which span r-cliques in G (so cl(G) is an r-uniform hypergraph in the aforementioned

sense). Throughout the paper, we fix an arbitrary function g(n) satisfying

g(n) = o
(
log n/ log log n

)
and g(n) = ω(1). (1)

2.1 The standard coupling and the critical window

It will be useful to work with the following standard device which gives a convenient
coupling of the random hypergraphs H(n, π) for all π ∈ [0, 1] and the random hypergraph
process.

Definition 2.1 (Standard coupling). For every h ∈
(
V
r

)
, let Uh be an independent random

variable, uniform from [0, 1]. Let

Hπ = (V, {h : Uh 6 π}).

Then Hπ ∼ H(n, π). Almost surely all values Uh, h ∈
(
V
r

)
, are distinct, yielding an instance

of the random hypergraph process (Ht)
M
t=0, as we can add the hyperedges in ascending order

of Uh.

We will operate within the following critical window : Define π− and π+ by setting

π± =
log n± g(n)(

n−1
r−1

) , (2)

where g(n) is the function which was fixed globally in (1), and, using δ, ε from Theorem 1.4,
let

p± =
(
π±/(1− n−δ)

)1/(r2). (3)

For n large enough we have p+ 6 n−2/r+ε, so Theorem 1.4 applies with p = p+ and π = π+.
It is well-known that (π−, π+) is the ‘critical window’ for the disappearance of the

last isolated vertex in a random r-uniform hypergraph (see [4, Lemma 5.1(a)]), and so by
Theorem 1.3 for the appearance of a perfect matching. So if we couple as in Definition 2.1,
then whp we have

Gp− ⊂ GTG ⊂ Gp+ and Hπ− ⊂ HTH ⊂ Hπ+ . (4)

2.2 Proof overview

Define p+, π+ as in equations (2) and (3). Our starting point is the coupling ofG ∼ G(n, p+)
and H ∼ H(n, π+) given by Theorem 1.4. We review this coupling in §3. In §4, the heart of
the proof, we take the coupled G ∼ G(n, p+) and H ∼ H(n, π+) and proceed by carefully
coupling uniform orders of the edges of G and hyperedges of H. Since p+ and π+ are
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the upper ends of the respective critical windows (see §2.1), whp this couples (copies of)
the stopped graph process GTG and the stopped hypergraph process HTH . This coupling
almost does what we want: for all hyperedges h ∈ HTH , except those in a small exceptional
set E , there is an r-clique in GTG on the same vertex set. Moreover, we show that whp all
h ∈ E have a partner hyperedge which appears between time TH and time TH + bg(n)nc.
To prove Theorem 1.6, we are left to show that we can get rid of the hyperedges in E and
still have an instance of the stopped random hypergraph process. To this end, E can be
whp embedded into a binomial random subset R ⊂ HTH where each hyperedge h ∈ HTH

is included independently with a small probability. We proceed to show that if we remove
the hyperedges in R from the hypergraph process up to time TH , whp this essentially
does not change the hitting time TH , and in particular whp HTH \ R is still an instance
of the stopped random hypergraph process. Chaining the couplings together then proves
Theorem 1.6. The necessary modifications in the proof of Theorem 1.7 are detailed in [9].

3 Coupling of G(n, p+) and H(n, π+)

In §3.1 we briefly review Riordan’s coupling from Theorem 1.4 for r > 4.5 We let π = π+
from equation (2) and p = p+ from equation (3).

3.1 The coupling algorithm for r > 4

Order the M =
(
n
r

)
potential hyperedges in some arbitrary way as h1, . . . , hM , and for

1 6 j 6 M , let Aj be the event that there is an r-clique in G ∼ G(n, p) on the vertex set
of hj. We construct the coupling of G ∼ G(n, p) and H ∼ H(n, π) step by step; in step j
revealing whether or not hj ∈ H, as well as some information about Aj.
Coupling algorithm: For each j from 1 to M :

• Calculate πj, the conditional probability of Aj given all the information revealed so
far.

• If πj > π, toss a coin which lands heads with probability π/πj, independently of
everything else. If the coin lands heads, then test whether Aj holds (which it does
with probability exactly πj). Include the hyperedge hj in H if and only if the coin
lands heads and Aj holds. (Note that the probability of including hj is exactly
π/πj · πj = π.)

• If πj < π, then toss a coin which lands heads with probability π (independently of
everything else), and declare hj present in H if and only if the coin lands heads. If
this happens for any j, we say that the coupling has failed.

After steps j = 1, . . . ,M , we have decided all hyperedges of H, and revealed information
on the events A1, . . . , AM of G. Now choose G conditional on the revealed information on
the events Aj.

5For the modifications in the case r = 3 we refer the reader to [8].



The hitting time of clique factors 558

4 Process coupling
Building upon Theorem 1.4, we couple the random graph process with the random hy-
pergraph process. Roughly speaking, we may couple the random graph process and the
random hypergraph process so that there is almost a copy of HTH within the r-cliques of
GTG : for all hyperedges in HTH except those in a set E (the exceptional hyperedges), there
is an r-clique in GTG on the same vertex set. Moreover, the hyperedges in E all gain a
partner hyperedge shortly after time TH .

Proposition 4.1. We may couple the random graph process (Gt)
N
t=0 and the random hyper-

graph process (Ht)
M
t=0 so that whp the following holds. There is a set of hyperedges E ⊂ HTH

so that

a) HTH \ E ⊂ cl(GTG), and

b) for every h1 ∈ E there is a h2 ∈ HTH+bg(n)nc \HTH so that |h1 ∩ h2| = 2.

Now whp, we can embed the set E of ‘exceptional’ hyperedges from Proposition 4.1 into
a random set R which includes every h ∈ HTH independently with a small probability.

Proposition 4.2. We may couple the random r-uniform hypergraph process (Ht)
M
t=0 and

a set R ⊂
(
[n]
r

)
of hyperedges so that both of the following properties hold.

a) We have R ⊆ HTH , and (given only HTH ) each hyperedge h ∈ HTH is included in R
independently with probability πR = 10r4g(n)

n
.

b) Let F ⊂ HTH be the set of hyperedges in HTH with a partner hyperedge in HTH+bg(n)nc\
HTH . Then, whp, F ⊂ R.

As the final puzzle piece, we find that after removing every hyperedge from HTH inde-
pendently with a small probability, whp we still have an instance of the stopped random
hypergraph process.

Proposition 4.3. Let HTH be the stopped random hypergraph process, and let R ⊂ HTH

be a subset of hyperedges where we include every h ∈ HTH independently with probability
πR = 10r4g(n)

n
. We may couple HTH and R with another instance H ′T ′H of the stopped random

hypergraph process so that, whp, HTH \ R = H ′T ′H
.

Combining Propositions 4.1, 4.2 and 4.3 yields a chain of couplings that whp embeds
the stopped hypergraph process into the cliques of the stopped graph process, completing
the proof:

H ′T ′H
whp
= HTH \ R

whp
⊆ HTH \ F

whp
⊆ cl(GTH ).
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