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Abstract

The dichromatic number of a digraph D is the smallest k such that D can be
partitioned into k acyclic subdigraphs, and the dichromatic number of an undirected
graph is the maximum dichromatic number over all its orientations. We present
bounds for the dichromatic number of Kneser graphs and Borsuk graphs, and for the
list dichromatic number of certain classes of Kneser graphs and complete multipartite
graphs. The bounds presented are sharp up to a constant factor. Additionally, we
give a directed analogue of Sabidussi’s theorem on the chromatic number of graph
products.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-076

We consider graphs and digraphs without loops or multiple edges/arcs. A proper k-
colouring of a graph G = (V,E) is a mapping f : V → [k] = {1, ..., k} such that f−1(i)
is an independent set for any i ∈ [k]. The chromatic number of G, denoted by χ(G), is
the minimum k for which G has a proper k-colouring. A proper k-colouring of a digraph
D = (V,A) is a mapping f : V → [k] such that f−1(i) is acyclic for any i ∈ [k], and the
dichromatic number of D, denoted by ~χ(D), is the minimum k for which D has a proper
k-colouring. Note that this definition generalizes the usual colouring, in the sense that
the chromatic number of a graph is equal to the dichromatic number of its corresponding
bidirected digraph. The notion was introduced by Neumann-Lara in 1982 [17] and it
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was later rediscovered by Mohar [14]. Since then it has been shown that many classical
results hold also in this setting [3, 8, 9, 10]. However, some fundamental questions remain
unanswered. The dichromatic number of an undirected graph G, denoted by ~χ(G), is
the maximum dichromatic number over all its orientations. Erdős and Neumann-Lara
conjectured the following.

Conjecture 1. [5] For every integer k there exists an integer r(k) such that ~χ(G) ≥ k for
any undirected graph G satisfying χ(G) ≥ r(k).

For instance, r(1) = 1 and r(2) = 3. But it is already unknown whether r(3) exists.
Mohar and Wu [15] managed to prove the fractional analogue of Conjecture 1.

The Kneser graph with parameters n, k, denoted by KG(n, k), is the graph with vertex
set
(
[n]
k

)
(i.e. the set of subsets of [n] of size k) where two vertices u, v are adjacent if and

only if u∩ v = ∅. It is well-known [7, 12, 13] that χ(KG(n, k)) = n− 2k+2 for 1 ≤ k ≤ n
2
,

as Kneser conjectured [11, 20]. Providing further evidence for Conjecture 1, Mohar and Wu
showed that Kneser graphs with large chromatic number have large dichromatic number.

Theorem 2. [15] For any positive integers n, k with 1 ≤ k ≤ n
2
we have that ~χ(KG(n, k)) ≥⌊

n−2k+2
8 log2

n
k

⌋
.

Note that, since χ(KG(n, k)) ≥ ~χ(KG(n, k)), this estimate is sharp up to a constant
factor when k is a constant fraction of n. Improving Theorem 2 asymptotically, we show
that the dichromatic number of Kneser graphs is of the order of their chromatic number
in general.

Theorem 3. There exists a positive integer n0 such that, for all n ≥ n0 and 2 ≤ k ≤ n
2
,

we have that ~χ(KG(n, k)) ≥
⌊

1
16
χ(KG(n, k))

⌋
.

We did not try to optimize the constant 1
16
. The proof of Theorem 3 is based on

Greene’s proof of Kneser’s conjecture, but it also relies on Theorem 2 for solving the case
of large k. Note that the bound cannot be extended to k = 1 (see Theorem 11).

Kneser’s conjecture was an open problem for more than two decades [11, 20]. The
famous resolution by Lóvasz [12] was inspired by the analogy between Kneser graphs and
Borsuk graphs. Let n be a natural number and a < 2 a positive real number. The Borsuk
graph with parameters n + 1 and a, denoted by BG(n + 1, a), is the undirected graph
with vertex set Sn = {x ∈ Rn+1 | ‖x‖ = 1} where two vertices x, y are adjacent if and
only if distRn+1(x, y) ≥ a. It is known that χ(BG(n + 1, a)) ≥ n + 2, which in fact is
equivalent to the Borsuk–Ulam theorem [13]. On the other hand, if a is not too small, an
(n + 2)-colouring of BG(n + 1, a) can be obtained by projecting the faces of an inscribed
(n+1)-dimensional simplex. Regarding the dichromatic number of Borsuk graphs, we can
show the following.

Theorem 4. ~χ(BG(n+ 1, a)) ≥ n+ 2 for any n ≥ 1.
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Next, we look at list colourings. They were introduced by Erdős, Rubin and Taylor
[6], and, independently, by Vizing [19]. A k-list assignment to a graph G = (V,E) (or
to a digraph D = (V,A)) is a mapping L : V →

(Z+

k

)
. A colouring (a mapping) f :

V → Z+ is said to be accepted by L if f(v) ∈ L(v) for every v ∈ V . G (resp. D) is
k-list colourable if every k-list assignment accepts a proper colouring. The list chromatic
number of G (resp. the list dichromatic number of D), also called its choice number, is
the minimum k such that G (resp. D) is k-list colourable, and it is denoted by χ`(G)
(resp. ~χ`(D)). Similarly, the list dichromatic number of G, denoted by ~χ`(G), is the
maximum list dichromatic number over all orientations of G. Bensmail, Harutyunyan and
Le [2] gave a sample of instances where the list dichromatic number of digraphs behaves
as its undirected counterpart.

Recently, Bulankina and Kupavskii [4] studied the list chromatic number of Kneser
graphs. They proved the following two results.

Theorem 5. [4] For any positive integers n, k with 1 ≤ k ≤ n
2
we have that χ`(KG(n, k)) ≤

n ln n
k
+ n.

Theorem 6. [4] Let s ≥ 3 be an integer. If n is sufficiently large and 3 ≤ k ≤ n1/2−1/s,
then χ`(KG(n, k)) ≥ 1

2s2
n lnn. For k = 2, we have that χ`(KG(n, k)) ≥ 1

32
n lnn for

sufficiently large n.

However, good bounds for larger k are still unknown. Using the arguments of Bulankina
and Kupavskii, as well as ideas from [15], we can prove the directed version of Theorem 6.

Theorem 7. For every ε ∈ R+ there exists a constant cε ∈ R+ such that ~χ`(KG(n, k)) ≥
cεn lnn for all n ≥ 2k with 2 ≤ k ≤ n1/2−ε.

Dense Kneser graphs have some similarities with complete multipartite graphs. Denote
by Km∗r the complete r-partite graph with m vertices on each part. Alon determined, up
to a constant factor, the list chromatic number of Km∗r, answering a question of Erdős,
Rubin and Taylor [6].

Theorem 8. [1] There exist two positive constants c1 and c2 such that for every m ≥ 2
and for every r ≥ 2

c1r lnm ≤ χ`(Km∗r) ≤ c2r lnm.

His proof can be adapted to find an analogous bound for the list dichromatic number
of Km∗r when m is not too small.

Theorem 9. For every ρ > 3, there exist constants C1, C2 ∈ R+ such that if r ≥ 2 and
m ≥ lnρ r then

C1r lnm ≤ ~χ`(Km∗r) ≤ C2r lnm.

In what follows we present a proof of Theorem 9. The following probabilistic result will
be required.
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Theorem 10. (Simple Concentration Bound, [16]) Let X be a random variable determined
by n independent trials, and satisfying the property that changing the outcome of any single
trial can affect X by at most c. Then

P(|X − EX| > t) ≤ 2e−
t2

2c2n .

Proof of Theorem 9. The upper bound is implied by Theorem 8. We may assume that m
is large enough. Let V1, ..., Vr be the parts of Km∗r.

Claim. There is a constant c and an orientation D of Km∗r such that, if ` ≥ c ln(rm),
then

(i) each subgraph of Km∗r isomorphic to K` has a directed cycle in D;

(ii) for each Ui ⊆ Vi and Uj ⊆ Vj with |Ui| = |Uj| = ` and i 6= j, D[Ui∪Uj] has a directed
cycle.

Proof. Orient the edges of Km∗r at random, independently and with probability 1
2
. Let

E, E ′ be the events that (i), (ii) hold, respectively. Put ` = dc ln(rm)e. There are
(
r
`

)
m`

copies of K` in Km∗r, and
(
r
2

)(
m
`

)2 subgraphs of the form Km∗r[Ui ∪ Uj]. Furthermore, K`

(resp. Km∗r[Ui ∪ Uj]) has 2
`(`−1)

2 orientations (resp. 2`2), among which `! (resp. at most
(2`)!) are acyclic. Therefore,

P(Ec) ≤
(
r

`

)
m``! 2−

`(`−1)
2 ≤

(
rm2−

`−1
2

)`
≤
(
e
`
c2−

`−1
2

)`
<

1

2
and

P(E ′c) ≤
(
r

2

)(
m

`

)2

(2`)! 2−`
2 ≤

(
2er2m22−`

)` ≤ (e 2`
c
+12−`+1

)`
<

1

2

if c is large enough. Hence P(E ∩ E ′) > 0 for some c.

Let k = bCr lnmc, where 0 < C ≤ 1 is a constant for now unspecified. We start by
showing that there exists an assignment of k-lists from a palette C of br lnmc colours such
that, for any given set A ⊆ C of at most 4

3
lnm colours, each part has at least 1

2
m1−δ

vertices that avoid the colours from A on their lists, where δ = 2C ln 5.
Assign to each vertex v of D a random k-list L(v) chosen independently and uniformly

among the
(|C |
k

)
possible k-lists. Given i ∈ [r] and A ⊆ C , consider the random variable

Xi,A = |{v ∈ Vi | L(v) ∩ A = ∅}|. Note that there are exactly
(|C |−|A|

k

)
k-lists avoiding the

colours in A. Devoting ourselves to the case |A| =
⌊
4
3
lnm

⌋
, we have that

EXi,A = m

(|C |−|A|
k

)(|C |
k

) ≥ m

(
|C | − |A| − k
|C | − k

)k
= m

(
1− |A|
|C | − k

)k

≥ m

(
1−

4
3
lnm

(1− C)r lnm− 1

)Cr lnm
≥ m

(
1− 4

5

)2C lnm

= m1−δ
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if m is large enough and C is not too large. By the Simple Concentration Bound (Theo-
rem 10),

P(Xi,A <
1

2
m1−δ) ≤ P(|Xi,A − EXi,A| >

1

2
m1−δ) ≤ 2e−

1
8
m1−2δ

.

Let E be the event that Xi,A <
1
2
m1−δ for some i ∈ [r] and A ⊆ C with |A| ≤ 4

3
lnm. We

have that

P(E) ≤ r

(
|C |⌊

4
3
lnm

⌋)2e− 1
8
m1−2δ ≤ r

(
e
br lnmc⌊
4
3
lnm

⌋)b 43 lnmc
2e−

1
8
m1−2δ

≤ r(er)
4
3
lnm2e−

1
8
m1−2δ ≤ 2e5 ln r lnm−

1
8
m1−2δ ≤ 2e5m

1
ρ lnm− 1

8
m1−2δ

if m is large enough. Consequently, if δ < 1
2
(1 − 1

ρ
) and m is large enough, there exists a

list assignment L′ satisfying the desired property. This is the assignment that we are going
to use.

Now let f be a proper colouring of D. We claim that there exists a set of indices I ⊆ [r]
of size at least 3r

4
such that |f(Vi)| ≤ 4c ln2(rm) for each i ∈ I. Indeed, if more than r

4

parts are coloured with more than 4c ln2(rm) colours each, then one of the colours appears
on more than cr ln2(rm)

|C | ≥ c ln
2(rm)
lnm

≥ c ln(rm) parts. By the choice of D, f is not proper, a
contradiction.

For each i ∈ [r] define the set Ai = {γ ∈ C | |Vi ∩ f−1(γ)| ≥ c ln(rm)}. We claim that
if f is acceptable then |Ai| > 4

3
lnm for every i ∈ I. Indeed, otherwise, by the choice of

the lists, at least 1
2
m1−δ vertices of Vi have been coloured with colours not from Ai. Thus

one of these colours is used at least
1
2
m1−δ

4c ln2(rm)
≤ c ln(rm)

times on Vi. If m is large enough, this implies that

m1−δ ≤ 8c2 ln3(rm) ≤ 8c2(m
1
ρ + lnm)3 ≤ 9c2m

3
ρ .

If we further assume that δ < 1 − 3
ρ
, we get a contradiction when m is large. Therefore

|Ai| > 4
3
lnm for every i ∈ I.

Now, by the choice of D, the sets A1, ..., Ar are mutually disjoint. But then

|C | ≥
r∑
i=1

|Ai| ≥
∑
i∈I

|Ai| >
4

3
|I| lnm ≥ r lnm ≥ |C |.

This contradiction shows that there is no acceptable proper colouring for the k-list assign-
ment L′.

We do not know what happens with other values of m, r. What is clear is that the
bound of Theorem 9 is not valid in general. Indeed, if m ≤ ln r then Theorem 11 implies
that ~χ(Km∗r) ≤ ~χ(Kmr) ≤ cr for some constant c.
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Theorem 11. [2] Let T be a tournament of order n. Then ~χ`(T ) ≤ n
log2 n

(1 + o(1)).

Some of our proofs rely on graph products. Let G,H be graphs (resp. digraphs).
The Cartesian product of G and H is the graph (resp. digraph) G�H with vertex set
V (G) × V (H) where there is an edge between (u, x) and (v, y) (resp. an arc from (u, x)
to (v, y)) if and only if either u = v and {x, y} ∈ E(H) (resp. and (x, y) ∈ A(H)), or
x = y and {u, v} ∈ E(G) (resp. and (u, v) ∈ A(G)). A well-known theorem of Sabidussi
[18] states that for any two graphs G and H the chromatic number of its product is
χ(G�H) = max{χ(G), χ(H)}. His proof can be adapted to show an analogous result for
digraphs.

Theorem 12. Let G and H be digraphs. Then ~χ(G�H) = max{~χ(G), ~χ(H)}.
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