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Abstract

Structural convergence is a framework for convergence of graphs by Nešetřil and
Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-
Schramm convergence. They posed a problem asking whether for a given sequence
of graphs (Gn) converging to a limit L and a vertex r of L it is possible to find a
sequence of vertices (rn) such that L rooted at r is the limit of the graphs Gn rooted
at rn. A counterexample was found by Christofides and Král’, but they showed that
the statement holds for almost all vertices r of L. We offer another perspective to the
original problem by considering the size of definable sets to which the root r belongs.
We prove that if r is an algebraic vertex (i.e. belongs to a finite definable set), the
sequence of roots (rn) always exists.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-075

1 Introduction
The field of graph convergence studies asymptotic properties of large graphs. The goal is
to define a well-behaved notion of a limit structure that describes the limit behavior of a
convergent sequence of graphs. Several different approaches are studied. The two most
prominent types of convergence are defined for sequences of dense [2][7][6] and sparse graphs
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[1][4]. The recently introduced notion of structural convergence by Nešetřil and Ossona de
Mendez offers a generalizing framework for these cases using ideas from analysis, model
theory and probability [8][9].

Structural convergence is a framework of convergence for general relational structures;
however, we follow the usual approach that we restrict to the of language graphs and
rooted graphs without loss of generality. Our arguments remain valid in the general case
(e.g. as in [3]). The Stone pairing of a formula ϕ in the language of graphs and a finite
graph G, denoted by ⟨ϕ,G⟩, is the probability that ϕ is satisfied by a tuple of vertices of G
selected uniformly at random (for ϕ sentence, we set ⟨ϕ,G⟩ = 1 if G |= ϕ, and ⟨ϕ,G⟩ = 0
otherwise). A sequence of finite graphs (Gn) is said to be FO-convergent if the sequence
(⟨ϕ,Gn⟩) converges for each ϕ. The limit structure L, called modeling, is a graph with
measure ν on a standard Borel space satisfying that all the first-order definable are sets
measurable. The value ⟨ϕ, L⟩ is defined as the measure of the set ϕ(L), the set of solutions
of ϕ in L, using the appropriate power of the measure ν. A modeling L is a limit of an
FO-convergent sequence (Gn) if lim⟨ϕ,Gn⟩ = ⟨ϕ, L⟩ for each ϕ. A modeling limit does not
exist for each convergent sequence. It is known to exist for all sequences of graphs from a
class C if and only if C is a nowhere dense class [10].

The authors of this framework asked in [8] the following question: given a sequence
(Gn) converging to a modeling L and a vertex of r of L, is there a sequence of vertices (rn)
such that the graphs Gn rooted at rn converge to L rooted at r? Christofides and Král’
provided an example that the answer is negative in general. However, they also proved
that it is possible to find such a sequence (rn) for almost all choices of the vertex r. That
is, if the root of L is chosen at random (according to the measure ν), the vertices (rn) exist
with probability 1 [3].

In this paper, we refine the original problem by considering the root r to be an algebraic
vertex of L. That is, r belongs to a finite definable set of L. We prove that the sequence
of roots (rn) always exists under such condition. Our main result reads as follows:

Theorem 1. Let (Gn) be an FO-convergent sequence of graphs with a modeling limit L
and r be an algebraic vertex of L. Then there is a sequence (rn), rn ∈ V (Gn), such that
(Gn, rn) FO-converges to (L, r).

Note that Theorem 1 deals with full FO-convergence and not just convergence with
respect to sentences (called elementary convergence), for which it is a trivial statement
(see the case of p = 0 in Lemma 3).

2 Notation
All graphs are finite except modelings, which are of size continuum. The vertex set of
a graph G is denoted by V (G). We use N = {1, 2, . . . },N0 = N ∪ {0} and [n] =
{1, 2, . . . , n}, [n]0 = [n] ∪ {0}. The set of formulas in p free variables in the language
of graphs is denoted by FOp and FO =

⋃
p∈N0

FOp is the set of all formulas. Tuples of
vertices, free variables, etc. are denoted by boldface letters, e.g. x = (x1, . . . , xp). Multiset
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is a set that allows multiplicities of its elements. The power set of a set X is denoted by
2X .

Let G be an arbitrary graph and r one of its vertices. By (G, r) we denote the graph
G rooted at r. Formally, considering G as a structure in the language of graphs, we add
a new constant “Root” to the vocabulary and interpret it as r. We refer to the extended
language as the language of rooted graphs. The set of formulas in the extended language
is denoted by FO+. Note that FOp ⊆ FO+

p .
Let L be a modeling. A formula ϕ ∈ FOp is algebraic in L if ϕ(L) is finite, where

ϕ(L) = {v ∈ V (L)p : L |= ϕ(v)} is the set of solutions of ϕ in L. A vertex of L is algebraic
if it satisfies an algebraic formula.

3 Rooting in algebraic sets
We prove the following statement, which is equivalent to Theorem 1.

Theorem 2. Let (Gn) be an FO-convergent sequence of graphs with a modeling limit L
and ξ(x) be an algebraic formula in L. Then there is a sequence (rn), rn ∈ V (Gn), and a
vertex r ∈ ξ(L) such that (Gn, rn) FO-converges to (L, r).

Obviously, Theorem 2 is implied by Theorem 1. The converse follows from fact that ξ
has only finitely many solutions in L and we can iteratively root them one by one until we
reach r.

Fix (Gn), L and ξ for the rest of the paper. Without loss of generality, assume that
|ξ(Gn)| = |ξ(L)| for each n and ξ(L) is an inclusion-minimal definable set in L. We
prove Theorem 2 in three steps. First, we consider a single formula ϕ in the language of
rooted graphs and show that we can find the roots (rn) and r such that lim⟨ϕ, (Gn, rn)⟩ =
⟨ϕ, (L, r)⟩. Then we consider an arbitrary finite collection of formulas ϕ1, . . . , ϕk and con-
struct a single formula ψ with the property that convergence of ⟨ψ, (Gn, rn)⟩ to ⟨ψ, (L, r)⟩
implies convergence of each ⟨ϕi, (Gn, rn)⟩ to ⟨ϕi, (L, r)⟩. Finally, a routine use of compact-
ness extends the previous to all formulas, which proves the theorem.

3.1 Single formula

For a formula ϕ(x) ∈ FO+
p , let ϕ−(x, y) ∈ FOp+1 be the formula created from ϕ by replacing

each occurrence of the term “Root” by “y” (we assume that y does not appear in ϕ).

Lemma 3. For a given ϕ ∈ FO+
p there is a sequence (rn), rn ∈ ξ(Gn), and a vertex

r ∈ ξ(L) such that lim⟨ϕ, (Gn, rn)⟩ = ⟨ϕ, (L, r)⟩.

Proof. If p = 0, then either the sentence (∀y)(ξ(y) → ϕ−(y)) or (∀y)(ξ(y) → ¬ϕ−(y)) is
satisfied in L (using the assumption that ξ(L) is an inclusion-minimal definable set); hence,
it holds in each Gn from a certain index on. Therefore, an arbitrary choice of rn ∈ ξ(Gn)
and r ∈ ξ(L) meets the conclusion.
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Let ν be the measure associated to the modeling L. Define fL : V (L)p → 2ξ(L) to be
the function that sends v to the set {u ∈ ξ(L) : L |= ϕ−(v, u)}. Consider the pushforward
measure µL on 2ξ(L) of the p-th power of ν by fL. Viewing 2ξ(L) as a lattice, we are mostly
interested in the measure of the filter generated by atoms of 2ξ(L). Let X↑ denote the
filters generated by X ∈ 2ξ(L). Observe that for u ∈ ξ(L) we have µL({u}↑) = ⟨ϕ, (L, u)⟩.
Suppose that |ξ(L)| = t and define an ordering RL = (u1, u2, . . . , ut) such that µL(RL) =
(µL({ui}↑))i∈[t] satisfies µL({u1}↑) ≥ µL({u2}↑) ≥ · · · ≥ µL({ut}↑). Define similarly for
each n the function fn : V (Gn)

p → 2ξ(Gn), measure µn (as the pushforward of the uniform
measure) and the vector Rn.

We claim that the sequence
(
µn(Rn)

)
⊂ ([0, 1]t, ∥ · ∥∞) converges to µL(RL). Then

an arbitrary choice of an index i ∈ [t] yields the sequence (rn) and vertex r as the i-th
elements of the vectors Rn, resp. RL.

The claim follows from the fact that the vectors µn(Rn) continuously depend on the
values ⟨ψk,ℓ, Gn⟩, where ψk,ℓ(x1, . . . ,xk) ∈ FOk·p is

(∃y1, . . . , yℓ)

(
l∧

i=1

ξ(yi) ∧
∧

1≤i<j≤ℓ

yi ̸= yj ∧
k∧

i=1

ℓ∧
j=1

ϕ−(xi, yj)

)

for ℓ ∈ [m]0, k ∈
[(

m
ℓ

)]
and that ⟨ψk,ℓ, Gn⟩ → ⟨ψk,ℓ, L⟩. This continuous dependency can

be proved by inclusion-exclusion with a help of classical results from combinatorics and
complex analysis: Girard-Newton formulas [11] and the continuous dependency of the roots
of a polynomial on its coefficients [12].

3.2 Finite collection of formulas

In this part, we use Lemma 3 to prove an analogous statement for a finite collection of
formulas.

Lemma 4. For given formulas ϕ1, . . . , ϕk there is a sequence (rn), rn ∈ ξ(Gn), and a vertex
r ∈ ξ(L) such that lim⟨ϕi, (Gn, rn)⟩ = ⟨ϕi, (L, r)⟩ for each ϕi.

Proof. Since for sentences any choice of (rn) and r works, we assume that neither of
ϕ1, . . . , ϕk is a sentence.

Consider an inclusion-maximal set I ⊆ [k] for which there is v ∈ ξ(L) such that every
i ∈ I satisfies ⟨ϕi, (L, v)⟩ > 0, denote |I| by k′. If I = ∅, we can choose (rn) and r
arbitrarily; hence, assume otherwise. For i ∈ I set Ai = {⟨ϕi, (L, u)⟩ : u ∈ ξ(L)} ∩ (0, 1].
Take a vector e ∈ Nk′ of exponents with the property that for each distinct a, b ∈×i∈I Ai

we have
∏

i∈I a
ei
i ̸=

∏
i∈I b

ei
i . Such a vector exists as each Ai is finite and contains only

positive values. The set of bad choices of rational exponents that make the values for
particular a, b coincide form a (k′−1)-dimensional hyperplane in Qk′ . We can surely avoid
finitely many of such hyperplanes (one for each choice of a and b) to find a good vector of
positive rational exponents and scale them to integers.
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Use Lemma 3 for the formula ψ of the form∧
i∈I

ei∧
j=1

ϕi(xi,j),

where all the tuples xi,j are pairwise disjoint, to obtain roots (rn) and r. In particular, we
can take the vertex r such that ⟨ψ, (L, r)⟩ > 0 (due to our choice of I).

We have lim⟨ϕi, (Gn, rn)⟩ = ⟨ϕi, (L, r)⟩ > 0 for each i ∈ I as

⟨ψ, (L, r)⟩ =
∏
i∈I

⟨ϕi, (L, r)⟩ei ,

using our selection of exponents e.
Also, it holds that lim⟨ϕj, (Gn, rn)⟩ = ⟨ϕj, (L, r)⟩ = 0 for each j ̸∈ I: for the formula

χ =
∧

i∈I∪{j} ϕi(xi), we have lim⟨χ, (Gn, rn)⟩ = ⟨χ, (L, r)⟩ = 0 due to the maximality of I
(this is for any choice of (rn) and r). We have

⟨χ, (Gn, rn)⟩ =
∏

i∈I∪{j}

⟨ϕi, (Gn, rn)⟩

and as for some ε > 0 there is n0 such that ⟨ϕi, (Gn, rn)⟩ > ε for each i ∈ I and n ≥ n0,
the factor ⟨ϕj, (Gn, rn)⟩ must tend to 0.

We remark that the rationalization of the fact that the sequence
(
⟨ϕj, (Gn, rn)⟩

)
for

j ̸∈ I even converge is the reason why we are proving Theorem 2 instead of Theorem 1
directly. We are using the fact that we can choose the set I (and the root r for the formula
ψ) such that any rooting (rn) makes the sequence ⟨χ, (Gn, rn)⟩ converge to 0.

4 Concluding remarks
An iterative use of Theorem 1 or 2 allows us to gain complete control over the algebraic
elements as we can consider each of them separately.

We note that it is possible to root solutions of algebraic formulas with multiple free
variables as the projection to each coordinate yields an algebraic set. Moreover, the natural
modification of Theorem 2 remains valid for FO-convergent sequences (Gn) without a
modeling limit. The proofs are analogous except that the set I in Lemma 4 is defined as an
inclusion-maximal set for which there are roots (rn) such that lim⟨

∧
i∈I ϕi(xi), (Gn, rn)⟩ >

0.
Besides the original problem in [8], our motivation was the study of structural conver-

gence of sequences created via gadget construction, see [5]. Using the result of this paper,
we conclude that FO-convergence is preserved if the gadgets replace only finitely many
edges (under natural additional assumptions).

In the typical case, the modeling L is of size continuum and the set of algebraic vertices
(which is at most countable) has measure 0. Hence, our results reveal only a negligible
portion of vertices of L for which the roots (rn) exist, which shows that there is still room
for further research.
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