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Abstract

Extensions of the Erd&s-Gallai theorem for general hypergraphs are well stud-
ied. In this work, we prove the extension of the Erdds-Gallai theorem for linear
hypergraphs. In particular, we show that the number of hyperedges in an n-vertex 3-
uniform linear hypergraph, without a Berge path of length k as a subgraph is at most
(kgl)n for k£ > 4. This is an extended abstract for EUROCOMB23 of the manuscript
arXiv:2211.16184.
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1 Introduction

Finding the maximum number of edges in a graph with fixed order not containing another
graph as a subgraph is a central problem in extremal combinatorics. This work considers
problems where a path of fixed length is forbidden. This problem is well understood for
graphs and r-uniform hypergraphs. The Erdgs—Gallai theorem states that a graph of order
n containing no path of length k as a subgraph contains at most %n edges. This bound
is sharp for infinitely many n. In particular, equality holds if and only if n is a multiple
of k and the graph is isomorphic to the union of 7 cliques of size k. This theorem was
extended to r-uniform hypergraphs by Gydéri, Katona and Lemons [11]. In order to state
their result, we will introduce the necessary definitions.
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For an integer r, a hypergraph H is r-uniform if it is a family of r-element sets of finite
family V' (H). We will use the following extension of this definition. For a set of integers R,
a hypergraph H is R-uniform if it is a family of sets of the finite family V(#), such that
the sizes of the sets are elements of R. Paths in hypergraphs can be defined in a number
of ways. In this paper, we follow the definition of Berge [2]. A Berge path of length k in
a hypergraph H is an alternating sequence vy, hy,vs, ..., hy, vr1 of distinct vertices and
hyperedges such that {v;,v;41} C h; for all i € [k]. A Berge cycle of length k& is also
defined similarly. The vertices v;, ¢ € [k + 1], are defining vertices of the Berge path and
the hyperedges h;, i € [k], are defining hyperedges of the Berge path.

Theorem (Gydri, Katona and Lemons [11]). Let H be an n-vertex r-uniform hypergraph
containing no Berge path of length k as a subgraph. Then if r > k > 2 then the number of
hyperedgff) of H is at most gn. If k> r+1> 2 then the number of hyperedges of H is

at most n.

The remaining case k = r + 1 was settled later in [3], the bound matches with the
bound in Theorem 1 for & > r 4+ 1 case. Forbidden path problems for connected graphs
and hypergraphs including their stability versions are well studied, we refer interested
readers to [16, 1, 13, 6, 15, 8, 7, 9]. Uniform hypergraphs with bounded circumference was
studied in [5, 12] and references therein.

Here we introduce some necessary technical definitions. For a hypergraph H let E(H)
be the hyperedge set and V() be the vertex set, we denote their sizes by e(#) and v(H)
accordingly. The hypergraph H is linear if for any two distinct hyperedges hi, ho we have
|hi N hy| < 1. For a vertex set V., V C V(H), we define another hypergraph #,. Where
V(Hy) =V and E(Hy) = {h\V : h € E(H),|h\ V| > 2}. Note that if H is {2,3}-
uniform linear hypergraph then #Hy is {2, 3}-uniform linear hypergraph also. The induced
hypergraph on the vertex set V' is denoted by H[V]. For a hypergraph H we denote two-
shadow of H by OH. It is a graph on the same vertex set as H and the set of edges is
{{u,v} : {u,v} C h e E(H)}. The degree of a vertex v in a hypergraph A is the number
of hyperedges incident to the vertex v and is denoted by dy(v). The minimum degree of
a vertex in a hypergraph H is denoted by 0y (v). The circumference of H is the length of
the longest Berge cycle in a hypergraph ‘H and is denoted by ¢(#H). The neighborhood of a
vertex v in a hypergraph H is denoted by Ny (v). For a hypergraph H and sub-hypergraph
H' we denote the hypergraph on the same vertex set as H and hyperedge set E(H)\ E(H')
by H\ H'.

2 Main results

Recently Gyarfas, Ruszinkd, and Sarkézy [10] initiated the study of three uniform linear
hypergraphs not containing a linear path, a matching, and a small tree. In particular,
they proved that the maximum number of hyperedges in an n vertex three uniform linear
hypergraph not containing a linear path of k£ edges is 1.5nk. In this paper, we prove
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the extension of Erdgs-Gallai theorem for linear 3-uniform hypergraphs but instead of
forbidding linear paths, we forbid Berge paths.

Theorem 1. Let H be an n vertex 3-uniform linear hypergraph, containing no Berge path
of length k > 4. Then the number of hyperedges in H is at most %n

Note that the upper bound is sharp for infinitely many k£ and n. In particular for
all k for which there exists a Steiner Triple System (a 3-uniform hypergraph that every
pair of vertices is covered by precisely one hyperedge) and n multiple of k, there exists an
n-vertex 3-uniform linear hypergraph H, containing no Berge path of length k£ with %n
hyperedges. Where H is the disjoint union of 7 copies of k-vertex Steiner Triple Systems.

In order to prove Theorem 1 with induction for k£, we need a stronger and more general
statement of the theorem.

Theorem 2. Let H be an n vertex {2,3}-uniform linear hypergraph, containing no Berge
path of length k > 4. Then the number of edges in OH is at most kgln

Note that Theorem 1 is a direct corollary of Theorem 2. The following remark shows
that the condition £ < 4 in Theorem 2 is necessary since for k < 4 we have different
bounds.

Remark. Let H be an n vertex linear {2, 3}-uniform hypergraph, containing no Berge path
of length k.

o [fk=1 thene(OH)=0;

o [fk=2thene(OH) < v(H); The upper—bound is sharp and the equality is achieved if
and only if is v(H) multiple of 3 and H is =32 mdependent hyperedges of size three.

o [fk=3thene(0H) < 3”(H . The upper—bound 1 sharp and the equality is achieved

if and only if v(H) is odd and H is “— YL hyperedges of size three sharing the same
vertex for every n > 3.

We find it challenging to obtain the precise bound for the problem initiated by Gyéarfésa,
Ruszinko, and Sarkozy [10]. Consequently, we would like to put forth a natural conjecture.

Conjecture 3. Let H be an n vertexr 3-uniform linear hypergraph, containing no linear

~ : 2k—1
path of length k > 5. Then the number of hyperedges in H is at most =z=n.

Note that, this bound is sharp for infinitely many pairs of n and k. In particular
for every k such that there exists a Steiner Triple System on 2k vertices and for every
n multiple of 2k. The hypergraph containing o+ copies of a Steiner Triple System on 2k
vertices achieves the desired bound.
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3 Proof of Theorem 2

For the full proof see manuscript [14].

We prove Theorem 2 by induction on k. At first, we consider the base case when k = 4.
We may assume H is a connected hypergraph since the upper bound is linear for n and
the additive constant is 0. If # is Berge cycle free then e(OH) < (the upper-bound
is attained by hyperedges of size three sharing a fixed vertex). If H contams a Berge cycle
it must be a Berge cycle of length 3 or 4 since it is a linear hypergraph. If H contains
Berge cycle of length 4 then by connectivity v(H) < 4, hence e(H) < (3) =32 IfH
contains a cycle of length 3, we denote it by C3. Cycle (5 is a linear cycle since H is a
linear hypergraph. If all of the hyperedges of C5 are size three then by the connectivity of
H we have H = C5 and e(0H) =9 = 3” If two of the hyperedges are size three then by
the connectivity of H we have H = C} and e(OH) = 7 < 3. If at most one hyperedge is
size three then we have e(9H) < 2. So the base case k = 4 is done.

Let H be an n-vertex linear {2 3}-uniform hypergraph containing no Berge path of
length & for some integer k > 4. Suppose by way of contradiction that e(OH) > k nlk=D),
Without loss of generality, we may assume 7 is minimal, in particular, we assume all hnear
{2, 3}-uniform hypergraphs containing no Berge path of length k& with n’ vertices, n’ < n,
contain at most "(k edges in the shadow. Note that from the minimality of n we have
the hypergraph H i 1s connected. Even more, for each vertex v, Hy () v} contains no Berge

k=1

path of length k, thus from the minimality of n we have dyy(v) > *5=. Hence we have

dou(v) > [£]. Note that since e(9H) > 2,21 the longest path of 7 is length & — 1 by the
induction hypothesis.
We omit the proof of the following Claims.

Claim 4. ¢(H) > [%W

Let Cy := vy, hi,v9, ho, ... hy_1,vs, he, v1 be a longest Berge cycle of H. Some C, defining
hyperedges h; are size three, let us denote the third vertex by x;, that is h; = {v;, v;11, z;} for
hyperedges of size three. From Claim 4 we have ¢ > (%W Let us denote the hypergraph

Hyv )\ fviiclgy by H'
Claim 5. The hypergraph H' is BPy_,-free.

If K — ¢ > 4 then by Claim 5 and induction hypothesis for hypergraph H' we have

n—E)(l;—f—l)' "

For a vertex u € V(H') we define the set S(u) := Nyp¢,(u) NV(Cy), L(u) := {v; : u = x;}
and R(u) := {vi41 : v = x;}. For a vertex set S such that S C V(C)) let ST be a set S
shifted right, in particular ST := {v; : v;_; € S}, the indices are taken module ¢. Similarly
we definite S, in particular S~ is a set for which S = (S7)". Naturally we denote the set
(S7)” with S7 and the set (S*)* with ST*. Note that L(u)™ = R(u), thus the size of
L(u) and R(u) are the same.

e(OH') < (
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In what follows we are going to estimate the number of edges in dH, in the following
way
6(6%) = 6(37‘[‘/(02)) + eafH(V(Cg), V(Hl)) + 6(87‘[’) (2)

Noting that eg(A, B) denotes the number of edges between vertex set A and B in G. In
most cases, we will use a naive upper bound for e(0Hy (,)) < (5) For k — ¢ > 4, we
estimate e(OH') by the induction hypotheses as in Equation 1. We estimate the number
of edges from V(H') to V(Cy), for each vertex u € V(H') in OH. In particular the number
of adjacent vertices to u is |L(u)| + |R(u)| + |S(u)|. Since each defining hyperedge of C;
provides at most two edges crossing between the vertices V(H') and V(C) we have a naive
upper bound for egy (V(Cy), V(H')) which is enough for most of the cases.

eon(V(Co), V(H)) <20+ Y |S(u)l. (3)
ueV (H')

Since Cy is a longest Berge cycle of H we are able to get an upper bound for |S(u)]
from the following claim.

Claim 6. For a vertex uw € V(H') we have (S(u) U L(u)) N S(u)~ = 0.

Note that if a vertex v; € S(u) then v;11 ¢ S(u) from Claim 6. Thus we have |S(u)| < £
for each vertex u of H'. Therefore eay(V (Cy),V(H')) < 20+ £(n — () from Equation 3. If
k — ¢ > 4 then by Equation 2 and 1 we have a contradiction

(0H) < (;)+2g+€<”—€>+(n—€>(k—€—1> D) gy <o)

2 2 2

We study the rest of the possible values of ¢ separately, ¢ € {k—3,k—2,k—1,k}. Let « be
the number of defining hyperedges of C; incident to a vertex of H'. Note that 0 < x < /.
If ¢ = k then C;, = H otherwise we have a Berge path of length k in H by the connectivity
of H. Thus we have n = k = ¢ and
e(0H) < (

0\  n(k—1)
2) 2

If £ =k — 1 then H' contains no hyperedge by Claim 5. Since H does not contain a
Berge path of length k, if a hyperedge h; adjacent to a vertex from V(#'), then neither
v; nor v;41 is a vertex of S(u), for all v € V(H). In particular for u,u’ € V(H') we have
L(u) N (S(u))” = 0. By this observation and Claim 6 every vertex of V(H’) is adjacent to
at most £=1=2 vertices of Cy with a non-defining hyperedge, that is |S(u)| < £==£. Thus
by Equation 2 we have

k—1 k—1-—
e(@’H)S( 5 >+2x+Tx(n—(k—1))‘
Henceifn > k+4+2orn=%k+1and z < %thenwe have e(OH) < @,sincexgk—l.

As e(OH) > @ we have n >k + 1.
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Ifn=k+1and z > % then there are two C, non-defining hyperedges h; and h;
such that {z;,z;41} = V(H’). Since H does not contain a Berge path of length k, if a
defining vertex of C} is incident to both vertices of H', either both incidences are from a
defining hyperedge or both incidences are from a non-defining hyperedge. If v; is incident
to both vertices of H' with h;_; and h; such that j # ¢ —1,4,7+ 1 then v; is not incident to
vi+1. Otherwise, if there is a hyperedge f’ incident to v; and v;44, then it is a non-defining
hyperedge and the following is a Berge path or a Berge cycle of length k,

!
Tit1, Rit1, Viva, . .. , Uj, f s Vi1, iy U4y - 7Uj+1>hjaxj~

If a vertex v; is adjacent to z; or x5 with a non-defining hyperedge then v;;, is not adjacent
to a vertex from {1, 22}. Thus for each vertex v; € V(Cy), j ¢ {i—1,4,i+ 1}, either there
is at most one vertex from V(H') adjacent to it, or if there are two then v;v;1; is not an
edge of OH or v;4+; is not adjacent to any vertex of V(H’). Note that if there is a defining
hyperedge of Cy not incident to a vertex of H' then we may choose i such that ¢ — 1 has
exactly one neighbor in V/(#H'). If all defining hyperedges of Cy are incident to a vertex of
H' then we may choose any i from [k — 1]. Thus we have a contradiction from Equation 2

e(H) < (k;1)+k—1+2§@.

The proof of remaining cases ¢ = k — 2 and ¢ = k — 3 involves more structural study
and can be seen in the original manuscript.
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