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Abstract
We study generalized quasirandom graphs whose vertex set consists of q parts (of

not necessarily the same sizes) with edges within each part and between each pair
of parts distributed quasirandomly; such graphs correspond to the stochastic block
model studied in statistics and network science. Lovász and Sós showed that the
structure of such graphs is forced by homomorphism densities of graphs with at most
(10q)q + q vertices; subsequently, Lovász refined the argument to show that graphs
with 4(2q + 3)8 vertices suffice. Our results imply that the structure of generalized
quasirandom graphs with q ≥ 2 parts is forced by homomorphism densities of graphs
with at most 4q2 − q vertices, and, if vertices in distinct parts have distinct degrees,
then 2q + 1 vertices suffice. The latter improves the bound of 8q − 4 due to Spencer.
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1 Introduction
Quasirandom graphs play an important role in structural and extremal graph theory. The
notion of quasirandom graphs can be traced to the works of Rödl [38], Thomason [42, 43]
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and Chung, Graham and Wilson [9] in the 1980s, and is also deeply related to Szemerédi’s
Regularity Lemma [40]. Indeed, the Regularity Lemma asserts that each graph can be
approximated by partitioning into a bounded number of quasirandom bipartite graphs.
There is also a large body of literature concerning quasirandomness of various kinds of
combinatorial structures such as groups [24], hypergraphs [5, 6, 22, 23, 28, 31, 37, 39],
permutations [4, 10, 32, 33], Latin squares [11, 17, 20, 25], subsets of integers [8], tourna-
ments [3, 7, 13, 14, 27, 26], etc. Many of these notions have been treated in a unified way
in the recent paper by Coregliano and Razborov [15].

The starting point of our work is the following classical result [9] on quasirandom
graphs: a sequence of graphs (Gn)n∈N is quasirandom with density p if and only if the
homomorphism densities of the single edge K2 and the 4-cycle C4 in (Gn)n∈N converge to p
and p4, i.e., to their expected densities in the Erdős-Rényi random graph with density p. In
particular, quasirandomness is forced by homomorphism densities of graphs with at most
4 vertices. We consider a generalization of quasirandom graphs, which corresponds to the
stochastic block model in statistics. In this model, the edge density of a (large) graph is
not homogeneous as in the Erdős-Rényi random graph model, however, the graph can be
partitioned into q parts such that the edge density is homogeneous inside each part and
between each pair of the parts. Lovász and Sós [35] established that the structure of such
graphs is forced by homomorphism densities of graphs with at most (10q)q + q vertices.
Lovász [34, Theorem 5.33] refined this result by showing that homomorphism densities of
graphs with at most 4(2q + 3)8 vertices suffice. Our main result (Theorem 1) improves
this bound: the structure of generalized quasirandom graphs with q ≥ 2 parts is forced by
homomorphism densities of graphs with at most 4q2 − q vertices. Our line of arguments
substantially differs from that in [35, 34], in particular, it is more explicit and so of a more
constructive nature, which is of importance in relation to applications [2, 19, 29, 30].

Spencer [41] considered generalized quasirandom graphs with q parts with an additional
assumption that vertices in distinct parts have distinct degrees, and established that the
structure of such graphs is forced by homomorphism densities of graphs with at most 8q−4
vertices. Addressing a question posed in [41], we show (Theorem 2) that graphs with at
most max{2q + 1, 4} vertices suffice in this restricted setting.

We present our arguments using the language of the theory of graph limits, which is
introduced in Section 2. We remark that similarly to arguments presented in [35, 34],
although not explicitly stated there, our arguments also apply in a more general setting of
kernels in addition to graphons (see Section 2 for the definitions of the two notions). In
Section 3, we state our main results and sketch the main ideas of their proofs.

2 Notation
We now introduce the notions and tools from the theory of graph limits that we need
to present our results; we refer the reader to the monograph by Lovász [34] for a more
comprehensive introduction. We also rephrase results concerning quasirandom graphs and
generalized quasirandom graphs with q parts presented in Section 1 in the language of the
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theory of graph limits.
If H and G are two graphs, the homomorphism density of H in G, denoted by t(H,G),

is the probability that a random mapping of the vertex set of H to the vertex set of G is
a homomorphism of H to G. A sequence (Gn)n∈N of graphs is convergent if the number
of vertices of Gn tends to infinity and the values of t(H,Gn) converge for every graph H
as n→∞. A sequence (Gn)n∈N of graphs is quasirandom with density p if it is convergent
and the limit of t(H,Gn) is equal to p|E(H)| for every graph H, where E(H) denotes the
edge set of H. If the particular value of p is irrelevant, we just say that a sequence of
graphs is quasirandom instead of quasirandom with density p.

The theory of graph limits provides analytic ways of representing sequences of conver-
gent graphs. A kernel is a bounded measurable function U : [0, 1]2 → R that is symmetric,
i.e., U(x, y) = U(y, x) for all (x, y) ∈ [0, 1]2. The points in the domain [0, 1] of a kernel are
often referred to as vertices. A graphon is kernel whose values are restricted to [0, 1]. The
homomorphism density of a graph H in a kernel U is defined as follows:

t(H,U) =

∫
[0,1]V (H)

∏
uv∈E(H)

U(xu, xv)dxV (H);

we often just briefly say the density of a graph H in a kernel U rather than the homomor-
phism density of H in U . A graphon W is a limit of a convergent sequence (Gn)n∈N of
graphs if t(H,W ) is the limit of t(H,Gn) for every graph H. Every convergent sequence
of graphs has a limit graphon and every graphon is a limit of a convergent sequence of
graphs [36]; also see [16] for relation to exchangeable arrays. Two kernels (or graphons)
U1 and U2 are weakly isomorphic if t(H,U1) = t(H,U2) for every graph H. Note that any
two limits of a convergent sequence of graphs are weakly isomorphic, and we refer particu-
larly to [1] for results on the structure of weakly isomorphic graphons and more generally
kernels.

We now revisit the notion of quasirandom graphs using the language of the theory of
graph limits. Observe that a sequence of graphs is quasirandom with density p if and only
if the sequence is convergent and its limit is the graphon equal to p everywhere. Hence,
the following holds for every graphon W : W is weakly isomorphic to the graphon equal to
p everywhere if and only if t(K2,W ) = p and t(C4,W ) = p4. More strongly, we say that a
kernel (or graphon) U is forced by graphs contained in a set H if every kernel U ′ such that
t(H,U ′) = t(H,U) for every graph H ∈ H is weakly isomorphic to U . In particular, the
constant graphon is forced by the graphs K2 and C4.

A q-step kernel U is a kernel such that [0, 1] can be partitioned to q non-null measurable
sets A1, . . . , Aq such that U is constant on Ai×Aj for all 1 ≤ i, j ≤ q but no such partition
into q−1 parts exists; a q-step graphon is a q-step kernel that is also a graphon. If the value
of q is not important, we just briefly say a step kernel or a step graphon. Observe that
step graphons correspond to stochastic block models and so to generalized quasirandom
graphs discussed in Section 1. In particular, the result of Lovász and Sós [35] mentioned
in Section 1 asserts that every q-step graphon is forced by graphs with at most (10q)q + q
vertices, and the result of Lovász [34, Theorem 5.33] that every q-step graphon is forced
by graphs with at most 4(2q + 3)8 vertices.



Forcing Generalized Quasirandom Graphs Efficiently 506

3 Results
We now state our two main results and sketch the ideas behind their proofs.

Theorem 1. The following holds for every q ≥ 2 and every q-step kernel U : if the density
of each graph with at most 4q2 − q vertices in a kernel U ′ is the same as in U , then the
kernels U and U ′ are weakly isomorphic.

To sketch the proof of Theorem 1, we need to recall the notion of a quantum graph: a
quantum graph is a finite linear combination of graphs (called constituents) and the density
of a quantum graph G in a kernel U is the linear combination of densities of graphs forming
G in U with the coefficients as in G. Fix now a q-step kernel U , and let U ′ be another
kernel such that the density of each graph with at most 4q2−q vertices in U ′ is the same as
in U . Lovász [34, Proposition 14.44] established the existence of a quantum graph Qk with
constituents having k(k + 1) vertices such that t(Qk, U

′′) = 0 if and only if U ′′ is weakly
isomorphic to a step kernel with at most k − 1 parts. It follows that t(Qq, U) 6= 0 and
t(Qq+1, U) = 0 and so t(Qq, U

′) 6= 0 and t(Qq+1, U
′) = 0, which yields that U ′ is a q-step

kernel.
The main step of our argument is a construction of a quantum graph Ps1,...,sq with

s1 + · · · + sq roots, which are split into q groups of s1, . . . , sq roots, with the following
property: when each root of Ps1,...,sq is assigned a vertex of a q-step kernel, i.e., a point of
[0, 1], the rooted quantum graph Ps1,...,sq evaluates to zero unless the roots in each of the
q groups are chosen from the same part of the step kernel. We show that there exists a
quantum rooted graph Ps1,...,sq for each choice of parameters s1, . . . , sq between q + 2 and
2q + 2 such that

• each constituent of Ps1,...,sq has at most s1 + · · ·+ sq + 2q(q − 1) vertices, and

• if the roots in the same group are chosen from the same part but roots from different
groups are from different parts, then the value of Ps1,...,sq is non-zero and does not
depend on the parameters s1, . . . , sq.

By introducing edges between some of the roots of Ps1,...,sq , it is possible to extract the
values of the densities of U ′ within the q parts and between the pairs of the parts, and so
these values need to be the same as the corresponding values in U . If we consider different
choices of the parameters s1, . . . , sq in addition to introducing edges between the roots, it
is also possible to extract a system of q equations that determines the sizes of the parts
of U ′ uniquely, which yields that the kernels U and U ′ are weakly isomorphic. Finally,
the analysis of the range of parameters s1, . . . , sq needed in the argument yields the bound
given in Theorem 1 on the number of vertices of graphs that need to be considered.

To state our second result, recall that if U is a kernel and x ∈ [0, 1] is a vertex of U ,
then the degree of x is ∫

[0,1]

U(x, y)dy.
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Theorem 2. The following holds for every q ≥ 2 and every q-step kernel U such that the
degrees of vertices in different parts are different: if the density of each graph with at most
2q + 1 vertices in a kernel U ′ is the same as in U , then the kernels U and U ′ are weakly
isomorphic.

We now sketch the proof of Theorem 2. Fix q ≥ 2 and a q-step kernel U with properties
given in the statement of Theorem 2 and let U ′ be another kernel such that the density of
each graph with at most 2q + 1 vertices in U ′ is the same as in U . To prove Theorem 2,
we construct for every choice of reals d1, . . . , dq ∈ R a quantum graph Gd1,...,dq with 2q + 1
vertices such that the density of Gd1,...,dq in a kernel is zero if and only if the degree of
almost every vertex of the kernel is equal to one of the values d1, . . . , dq. The assumption
of Theorem 2 now yields that the sets of the degrees of the vertices of the kernels U and
U ′ are the same. We next construct a quantum graph with q vertices, one of them being a
root, which forces the root to be from a part of a step kernel with a specific degree. These
rooted quantum graphs are then used to force the sizes of the parts, the densities within the
parts and between all pairs of the parts. Finally, we use the fact that a step kernel (see [12,
Lemma 11], also see [34, Proposition 14.14]) is the minimizer of the density of C4 among
all partitioned kernels with same sizes of the parts, densities within the parts and between
the pairs of the parts, to conclude that the kernels U and U ′ are weakly isomorphic.

We conclude by stating as an open problem whether it suffices in Theorem 1 to consider
homomorphism densities of graphs with o(q2) vertices. To supplement the open problem,
we show that the order of graphs needs to be at least linear in q. Our argument is similar
to that used in analogous scenarios, e.g., in [18, 21]. For reals a1, . . . , aq > 0 such that
a1+· · ·+aq < 1, let Ua1,...,aq be the (q+1)-step graphon with parts whose sizes are a1, . . . , aq
and 1− a1 − · · · − aq, and that is equal to one within each of the first q parts and to zero
elsewhere. Observe that if H is a graph that, after removing isolated vertices, consists of
k components with respectively n1, . . . , nk vertices then

t
(
H,Ua1,...,aq

)
=

k∏
i=1

q∑
j=1

ani
j .

It follows that if

t
(
K`+1, Ua1,...,aq

)
= t
(
K`+1, Ua′1,...,a

′
q

)
for every ` = 1, . . . , q − 1, (1)

then the homomorphism density of every graph with at most q vertices is the same in
Ua1,...,aq and in Ua′1,...,a

′
q
. View (t(K`+1, Ua1,...,aq))

q−1
`=1 ∈ Rq−1 as a function of a1, . . . , aq−1.

If its arguments a1, . . . , aq−1 are distinct, then the Jacobian matrix can be shown to be
invertible and the Implicit Function Theorem gives, for every a′q sufficiently close to aq, a
vector (a′1, . . . , a′q−1) close to (a1, . . . , aq−1) such that (1) holds. It follows that there are two
non-weakly-isomorphic (q + 1)-step graphons that have the same homomorphism density
of every graph with at most q vertices.
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