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Abstract

We prove that in all regular robust expanders G, every edge is asymptotically
equally likely contained in a uniformly chosen perfect matching M . We also show
that given any fixed matching or spanning regular graph N in G, the random vari-
able |M ∩ E(N)| is approximately Poisson distributed. This in particular confirms
a conjecture and a question due to Spiro and Surya, and complements results due
to Kahn and Kim who proved that in a regular graph every vertex is asymptoti-
cally equally likely contained in a uniformly chosen matching. Our proofs rely on
the switching method and the fact that simple random walks mix rapidly in robust
expanders.
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1 Introduction
A remarkable result due to Kahn and Kim [5] says that in any d-regular graph G, the
probability that a vertex is contained in a uniformly chosen matching in G is 1 − (1 +

od(1))d
− 1

2 . This shows that the structure of a d-regular graph has essentially no impact on
the probability that a vertex is contained in a uniformly chosen matching.

In this paper we are interested in uniformly chosen perfect matchings. Then, surely,
each vertex is contained in every perfect matching. Hence, as the statement for vertices is
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trivial, what about the probability that an edge is contained in a random perfect matching?
Is each edge equally likely contained in random perfect matching? A moment of thought
reveals that this is wrong in a very strong sense. In every odd-regular graph with exactly
one bridge, the bridge is contained in every perfect matching, while the edges adjacent to
the bridge are contained in none of the perfect matchings. Therefore, in order to avoid a
trivial statement further conditions are needed.

Hall’s condition for the existence of perfect matchings in bipartite graphs says that the
neighbourhood of an (independent) set should be at least as large as the set itself, which
is clearly also a necessary condition. Here, we assume that this property is present in a
robust sense in order to avoid the trivial scenarios mentioned above. More precisely, let
ν, τ > 0 and G be a graph on n vertices. Then, we define the ν-robust neighbourhood
RNν,G(S) of a set S ⊆ V (G) in G to be the set of vertices of G which have at least νn
neighbours in S. We say that G is a robust (ν, τ)-expander if RNν,G(S) ≥ |S|+νn for each
S ⊆ V (G) satisfying τn ≤ |S| ≤ (1 − τ)n. Robust expansion is a fairly mild assumption
and consequently it proved to be useful in several situations, see for example [3, 6, 7].

We denote by P(G) the set of all perfect matchings in G and write M ∼ U(P(G))
to refer to a uniformly chosen matching from P(G). Our main result implies that such
matchings M are extremely well-distributed in robust expanders.

Theorem 1. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0 be even and d ≥ δn. Then, for any d-regular
robust (ν, τ)-expander G on n vertices, M ∼ U(P(G)), and e ∈ E(G), we have

P[e ∈M ] = (1 + on(1))d
−1.

In fact much more is true. Fix any matching N in G, let M ∼ U(P(G)), and consider
X := |M ∩ N |. Then, linearity of expectation and Theorem 1 imply that E[X] = (1 +
on(1))d

−1|N |. Employing the heuristic that each edge is independently present in M ∼
U(P(G)) with probability d−1, then we expect that X has a binomial distribution with
parameters |N | and d−1. This is approximated by a Poisson distribution with parameter
d−1|N |, whenever |N | grows with n. Our next result confirms this.

To this end, we define the total variation distance of two integer-valued random variables
Y and Z as dTV(Y, Z) := 1

2

∑
k∈Z |P[Y = k] − P[Z = k]|, which measures how close two

distributions are. Moreover, we write Y ∼ Po(λ) if Y is a random variable which follows
a Poisson distribution with parameter λ.

Theorem 2. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists
n0 ∈ N for which the following holds. Let n ≥ n0 be even and d ≥ δn. Then, for any
d-regular robust (ν, τ)-expander G on n vertices, M ∼ U(P(G)), any matching N in G,
X := |M ∩N |, and Y ∼ Po(d−1|N |), we have dTV(X, Y ) = on(1).

The fact that N is a matching is not crucial for our argument, however note for example
that if N is a star, then X is a {0, 1}-valued random variable. Hence, X can only converge
to a Poisson distribution if N is somewhat spread out. In particular, when N is a spanning
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r-regular graph for some fixed r, we can derive an analogue of Theorem 2 (see Section 2),
which answers a question of Spiro and Surya [8].

Theorem 2 has some interesting consequences. We define pm(G) := |P(G)| and sup-
pose G and M are as in Theorem 2. Let N be a perfect matching in G. Then, Theorem 2
implies that

pm(G−N)

pm(G)
= P[M ∩N = ∅] = (1 + on(1))e

− n
2d .

For a graph G with a perfect matching, we denote by G◦ a subgraph of G where one perfect
matching is removed. Various combinatorial problems can be expressed as determining
pm(G◦)
pm(G)

. For example, when G = Kn
2
,n
2
, this ratio is equal to the probability that a random

permutation of order n
2
is fixed-point-free, and it is well known that this probability equals

(1 + on(1))e
−1. The case when G = Kn also has a combinatorial interpretation, see [4].

Let Ka×b denote the complete multipartite graph with a parts, each of size b. As an in-
terpolation between the casesKn

2
,n
2
andKn, one may ask whether pm(K◦r×n

r
)(pm(Kr×n

r
))−1

converges to a limit. Johnston, Kayll, and Palmer [4] formulated this as a conjecture (and
conjectured the limit value). Recently this was resolved by Spiro and Surya [8]. As all these
graphs are robust expanders (excluding Kn

2
,n
2
; we discuss bipartite graphs in Section 2),

Theorem 2 reproves the result due to Spiro and Surya [8].
In fact, Spiro and Surya [8] also speculate whether for any α > 1

2
, all regular graphs

G on an even number n of vertices with δ(G) ≥ αn satisfy pm(G◦)
pm(G)

→ e−
1
2α , but consider

this statement far too strong to be true. As it is trivial to show that graphs on n vertices
with δ(G) ≥ (1

2
+ on(1))n are robust expanders, Theorem 2 shows that this statement is

actually true.

Our proof strategy is as follows (see the full version of this article [2] for more details).
Let G,M,N , and X be as in the statement of Theorem 2. We estimate the ratios of the
form P[X=k]

P[X=k−1] via the so-called switching method. Knowing all relevant fractions of this
type already exhibits the distribution of X, which has the advantage that the probabilities
P[X = k] do not need to be calculated directly.

The switching method is implemented as follows. Fix a positive integer k and denote by
Mk andMk−1 the sets of perfect matchings in G which contain precisely k and k−1 edges
of N , respectively. Then, construct an auxiliary bipartite graph H on vertex classesMk

andMk−1 by joining two perfect matchings M ∈Mk and M ′ ∈Mk−1 if there is a cycle C
of length 2` in G which contains precisely one edge of N and alternates between edges ofM
and M ′. (In other words, M ∈Mk and M ′ ∈Mk−1 are adjacent in H if N ∩M ′ ⊆ N ∩M
and the extra edge in (N ∩M)\M ′ can be ‘switched out’ ofM to obtainM ′ by exchanging
` edges of M for ` edges of M ′, where these 2` edges altogether form a cycle.)

Note that if all perfect matchings inMk have degree (roughly) dk in H, while all perfect
matchings in Mk−1 have degree (roughly) dk−1, then dk|Mk| ≈ e(H) ≈ dk−1|Mk−1|.
Hence, P[X=k]

P[X=k−1] = |Mk|
|Mk−1|

≈ dk−1

dk
. Therefore, the crux of the proof consists in precisely

estimating the number of such alternating cycles.
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Counting the number of cycles of a certain length can be achieved using random walks
as follows. Given a d-regular graph, note that the number of walks of length ` starting
at u is precisely d`, and so the probability that a simple random walk that starts in u
is in v after ` steps is equal to the number of walks from u to v of length ` divided by
d`. Since simple random walks are rapidly mixing in robust expanders, one can precisely
estimate such probabilities, and therefore the number of such walks. A simple counting
argument can eliminate those walks which are not paths, and so we can accurately count
the number of cycles of fixed length in a regular robust expander. In practice, we have to
consider simple random walks that use in every second step an edge from a fixed perfect
matching M . However, this additional technicality does not affect the mixing properties
of such walks and so we can still precisely count them.

We remark that Spiro and Surya [8] also used the switching method, which is common
for this type of problems. Our contribution is to use longer cycles and perform the analysis
with Markov chains; although the intuition is that the estimations become less precise with
larger cycles, we employ key properties of Markov chains to show that in fact the opposite
is true. Besides the fact that our results are substantially more general, the analysis also
becomes significantly shorter and cleaner.

2 Extensions
In the full version of this paper we showed that uniformly chosen perfect matchings in
robust expanders contain each edge asymptotically equally likely. In fact, for a larger
set of disjoint edges, these events are approximately independent. As robust expanders
are a fairly large class of graphs, this in particular contains graphs G on n vertices with
δ(G) ≥ (1

2
+ on(1))n, which confirms a question of Spiro and Surya [8] in a strong form.

2.1 Regular subgraphs

Spiro and Surya [8] also suggest to estimate the probability that a uniformly chosen perfect
matching of Turán graphs intersects a fixed spanning r-regular subgraph.

Theorem 3. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0 be even, d ≥ δn, and let r ≤ n

1
50 be a positive

integer. Then, for any d-regular robust (ν, τ)-expander G on n vertices, M ∼ U(P(G)),
any spanning r-regular subgraph N in G, X := |M ∩ E(N)|, and Y ∼ Po( rn

2d
), we have

dTV(X, Y ) = on(1).

As a corollary, one can calculate the probability that r perfect matchings, each chosen
independently and uniformly at random, are (edge-)disjoint. This relates to a problem
of Ferber, Hänni, and Jain [1], which asks for the probability of selecting r edge-disjoint
copies of a graph H in a host graph G. They answer this question for Hamilton cycles in
the complete graph. The following corollary is an analogue for perfect matchings in the
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more general class of robust expanders. The proof follows immediately from Theorem 3
by induction on r.

Corollary 4. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0 be even, d ≥ δn, and r ≤ n

1
50 . Then, for any

d-regular robust (ν, τ)-expander G on n vertices and independent M1, . . . ,Mr ∼ U(P(G)),
we have

P[M1, . . . ,Mr are disjoint] = (1 + on(1))e
− n

2d(
r
2).

2.2 Bipartite graphs

Of particular interest are perfect matchings in (balanced) bipartite graphs, but bipartite
graphs are not robust expanders as the neighbourhood of one of the partition classes is
only at most as large as the class itself. However, the notion of robust expanders can be
adapted to bipartite graphs. Let G be a bipartite graph with vertex partition (A,B) and
|A| = |B| = n. We say that G is a bipartite robust (ν, τ)-expander if RNν,G(S) ≥ |S|+ νn
for each S ⊆ A satisfying τn ≤ |S| ≤ (1− τ)n.

The following is an analogue of Theorems 1–3 for bipartite graphs. This then also
includes an approximation for the number of derangements.

Theorem 5. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0, d ≥ δn, and r ≤ n

1
50 . Let G be a balanced

bipartite d-regular robust (ν, τ)-expander on 2n vertices and suppose that N is a matching
in G or a spanning r-regular subgraph of G. Let M ∼ U(P(G)), let X := |M ∩E(N)|, let
Y ∼ Po(d−1e(N)), and let e ∈ E(G). Then, P[e ∈ M ] = (1 + on(1))d

−1 and dTV(X, Y ) =
on(1).
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