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Abstract

Finding general conditions which ensure that a graph is Hamiltonian is a central
topic in graph theory. An old and well known conjecture in the area states that any
d-regular n-vertex graph G whose second largest eigenvalue in absolute value λ(G) is
at most d/C, for some universal constant C > 0, has a Hamilton cycle. We obtain two
main results which make substantial progress towards this problem. Firstly, we settle
this conjecture in full when the degree d is at least a small power of n. Secondly, in the
general case we show that λ(G) ≤ d/C(log n)1/3 implies the existence of a Hamilton
cycle, improving the 20-year old bound of d/ log1−o(1) n of Krivelevich and Sudakov.
We use in a novel way a variety of methods, such as a robust Pósa rotation-extension
technique, the Friedman-Pippenger tree embedding with rollbacks and the absorbing
method, combined with additional tools and ideas.

Our results have several interesting applications, giving best bounds on the num-
ber of generators which guarantee the Hamiltonicity of random Cayley graphs, which
is an important partial case of the well known Hamiltonicity conjecture of Lovász.
They can also be used to improve a result of Alon and Bourgain on additive patterns
in multiplicative subgroups.
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1 Introduction
A Hamilton cycle in a graph G is a cycle passing through all the vertices of G. If it exists,
then G is called Hamiltonian. Being one of the most central notions in Graph Theory, it has
been extensively studied by numerous researchers, see e.g., [1, 9, 13, 15, 16, 20, 23, 28, 31,
32, 34, 38], and the surveys [22, 33]. In particular, the problem of deciding Hamiltonicity
of a graph is known to be NP-complete and thus, finding general conditions which ensure
that G has a Hamilton cycle is one of the most popular topics in Graph Theory. For
instance, two famous theorems of this nature are the celebrated result of Dirac [19], which
states that if the minimum degree of an n-vertex graph G is at least n/2, then G contains
a Hamilton cycle, and the criterion of Chvátal and Erdős [13] that a graph is Hamiltonian
if its connectivity number is at least as large as its independence number.

In fact, most of the classical criteria for Hamiltonicity focus on rather dense graphs. A
prime example of this is clearly Dirac’s theorem stated above, but also the Chvátal-Erdős
condition requires the graph to be relatively dense, of average degree Ω(

√
n). In contrast,

sufficient conditions that ensure Hamiltonicity of sparse graphs seem much more difficult
to obtain. A natural starting point towards this topic is to consider sparse random graphs,
to which a lot of research has been dedicated in the last 50 years. In a breakthrough
paper in 1976, Pósa [38] proved that the binomial random graph model G(n, p) with p ≥
C log n/n for some large constant C almost surely contains a Hamilton cycle. In doing
so, he invented the influential rotation-extension technique for finding long cycles and
paths, which has found numerous further applications since then. Pósa’s result was later
refined by Korshunov [26] and in 1983, a more precise threshold for Hamiltonicity was
obtained by Bollobás [8] and Komlós and Szemerédi [25], who independently showed that
if p = (log n+log log n+ω(1))/n, thenG(n, p) is almost surely Hamiltonian. It is a standard
exercise to note that this is essentially tight - indeed, if p = (log n+log log n−ω(1))/n, then
G(n, p) almost surely has a vertex with degree at most 1, and hence is not Hamiltonian.
In parallel, significant attention has also been given to the Hamiltonicity of the random
d-regular graph model Gn,d - it is known that Gn,d almost surely contains a Hamilton cycle
for all values of 3 ≤ d ≤ n− 1. For this result, the reader is referred to Cooper, Frieze and
Reed [14] and Krivelevich, Sudakov, Vu and Wormald [30] and their references.

Given the success of the study of Hamilton cycles in sparse random graphs, it be-
came natural to then consider pseudorandom graphs, which are deterministic graphs that
resemble random graphs in various important properties. A convenient way to express
pseudorandomness is via spectral techniques and was introduced by Alon. An (n, d, λ)-
graph is an n-vertex d-regular graph G whose second largest eigenvalue in absolute value,
λ(G), is such that λ(G) ≤ λ. Roughly speaking, λ(G) is a measure of how “smooth” the
edge-distribution of G is, and the smaller its value, the closer to “random” G behaves. The
reader is referred to [29] for a detailed survey concerning pseudorandom graphs.

In a rather influential paper, Krivelevich and Sudakov [27] employed Pósa’s rotation-
extension technique to prove the very general result that (n, d, λ)-graphs are Hamiltonian,
provided λ is significantly smaller than d. Precisely, they showed that if n is sufficiently
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large, then

d/λ ≥ 1000 log n(log log log n)

(log log n)2
(1)

guarantees that any (n, d, λ)-graph contains a Hamilton cycle. It is worth mentioning
that Hefetz, Krivelevich and Szabó [23] provided a more general sufficient condition for
Hamiltonicity in terms of expansion and some variant of high connectivity, yet for (n, d, λ)-
graphs their condition essentially reduces to (1).

The above result on Hamiltonicity of (n, d, λ)-graphs has found numerous applications
in the last 20 years towards some well-known problems, some of which we will discuss later.
Given its significance and generality, it leads to the very natural and fundamental question
of whether a smaller ratio of d/λ is already sufficient to imply Hamiltonicity. Krivelevich
and Sudakov [27] conjectured that it should suffice that d/λ is only a large enough constant.

Conjecture 1.1. There exists an absolute constant C > 0 such that any (n, d, λ)-graph
with d/λ ≥ C contains a Hamilton cycle.

2 Main results
Despite the plethora of incentives, there has been no improvement until now on the Kriv-
elevich and Sudakov bound stated in (1). We make significant progress towards Conjec-
ture 1.1 in two ways. First, we improve on the Krivelevich and Sudakov bound in general
by showing that a spectral ratio of order (log n)1/3 already guarantees Hamiltonicity.

Theorem 2.1. There exists a constant C > 0 such that any (n, d, λ)-graph with d/λ ≥
C(log n)1/3 contains a Hamilton cycle.

The proof of the above result will rely on the Pósa rotation-extension method with various
new ideas. Namely, we will need to develop some techniques in order to use this method
in a robust manner.

Secondly, we confirm Conjecture 1.1 in full when the degree is polynomial in the order
of the graph.

Theorem 2.2. For every constant α > 0, there exists a constant C > 0 such that any
(n, d, λ)-graph with d ≥ nα and d/λ ≥ C contains a Hamilton cycle.

In fact, Theorem 2.2 is a corollary of a more general statement that we will prove which in
particular states that (n, d, λ)-graphs with linearly many vertex-disjoint cycles are Hamil-
tonian.

3 Applications and related problems
Both Theorem 2.1 and Theorem 2.2 immediately yield improvements in several applica-
tions which made use of the result of Krivelevich and Sudakov. One application is an
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important special case of a famous open question of Lovász [35] from 1969 concerning the
Hamiltonicity of a certain class of well-behaved graphs (see e.g., [17] and its references for
more background on the problem).

Conjecture 3.1. Every connected vertex-transitive graph contains a Hamilton path, and,
except for five known examples, a Hamilton cycle.

Since Cayley graphs are vertex-transitive and none of the five known exceptions in Lovász’s
conjecture is a Cayley graph, the conjecture in particular includes the following, which was
asked much earlier in 1959 by Rapaport Strasser [39].

Conjecture 3.2. Every connected Cayley graph is Hamiltonian.

For these conjectures, a proof is currently out of sight. Indeed, notable progress towards
them in their full generality are a result of Babai [5] that every vertex-transitive n-vertex
graph contains a cycle of length Ω(

√
n) (see [18] for a recent improvement) and a result of

Christofides, Hladký and Máthé [12] that every vertex-transitive graph of linear minimum
degree contains a Hamilton cycle.

Given this, it is natural to consider the “random” version of Conjecture 3.2. Indeed, Alon
and Roichman [4] showed that in any groupG, a random set S of O(log |G|) elements is such
that the Cayley graph generated by them, Γ(G,S), is almost surely connected. Therefore, a
particular instance of Conjecture 3.2 is to show that Γ(G,S) is almost surely Hamiltonian,
which is itself a conjecture of Pak and Radoičić [37]. In fact, this relates directly to
Conjecture 1.1 since it can be shown, generalizing the result of Alon and Roichman, that
if |S| ≥ C log |G| for some large constant C, then Γ(G,S) is almost surely an (n, d, λ)-
graph with d/λ ≥ K for some large constant K. Hence, Conjecture 1.1 would imply the
Hamiltonicity of Γ(G,S). Improving on several earlier results [11, 27, 36] we will show
how Theorem 2.1 can be used to prove that if |S| is of order log5/3 n, then Γ(G,S) is
almost surely Hamiltonian. We will also give an improved bound on a related problem
of Akbari, Etesami, Mahini, and Mahmoody [3] concerning Hamilton cycles in coloured
complete graphs which use only few colours.

Another application of our results concerns one of the central themes in Additive Com-
binatorics, the interplay between the two operations sum and product. A well-known fact
in this area is that any multiplicative subgroup A of the finite field Fq of size at least q3/4
must contain two elements x, y such that x+ y also belongs to A. Motivated by this, Alon
and Bourgain [3] studied more complex additive structures in multiplicative subgroups. In
particular, they proved that when a subgroup has size |A| ≥ q3/4(log q)1/2−o(1), then there
is a cyclic ordering of the elements of A such that the sum of any two consecutive elements
is also in A. Using Theorem 2.2, we can improve on Alon and Bourgain’s result, showing
that the additional polylog-factor can be avoided. This shows that when |A| is of order
q3/4, not only does it contain x, y, x+ y ∈ A but also much more complex structures.

Finally, we give an application of our techniques to another problem related to Con-
jecture 3.2. Motivated by this conjecture, Pak and Radoičić [37] showed that every group
G has a set of generators S of size at most log2 |G| such that the Cayley graph Γ(G,S)
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is Hamiltonian, which is optimal since there are groups that do not have generating sets
of size smaller than log2 |G|. Since their proof relies on the classification of finite simple
groups, they asked to find a classification-free proof of this result. Using the methods de-
veloped for the proof of Theorem 2.2 we give a classification-free proof that there is always
such a set S with |S| = O(log n).
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