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Abstract

The graph removal lemma is a fundamental result in extremal graph theory which
says that for every fixed graph H and ε > 0, if an n-vertex graph G contains εn2 edge-
disjoint copies of H then G contains δnv(H) copies of H for some δ = δ(ε,H) > 0.
The current proofs of the removal lemma give only very weak bounds on δ(ε,H), and
it is also known that δ(ε,H) is not polynomial in ε unless H is bipartite. Recently,
Fox and Wigderson initiated the study of minimum degree conditions guaranteeing
that δ(ε,H) depends polynomially or linearly on ε. We answer several questions of
Fox and Wigderson on this topic.
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1 Introduction
The graph removal lemma, first proved by Ruzsa and Szemerédi [22], is a fundamental result
in extremal graph theory. It also has important applications to additive combinatorics and
property testing. The lemma states that for every fixed graph H and ε > 0, if an n-vertex
graph G contains εn2 edge-disjoint copies of H then G it contains δnv(H) copies of H, where
δ = δ(ε,H) > 0. Unfortunately, the current proofs of the graph removal lemma give only
very weak bounds on δ = δ(ε,H) and it is a very important problem to understand the
dependence of δ on ε. The best known result, due to Fox [11], proves that 1/δ is at most
a tower of exponents of height logarithmic in 1/ε. Ideally, one would like to have better
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bounds on 1/δ, where an optimal bound would be that δ is polynomial in ε. However, it is
known [2] that δ(ε,H) is polynomial in ε only if H is bipartite. This situation led Fox and
Wigderson [12] to initiate the study of minimum degree conditions which guarantee that
δ(ε,H) depends polynomially or linearly on ε. Formally, let δ(ε,H; γ) be the maximum
δ ∈ [0, 1] such that if G is an n-vertex graph with minimum degree at least γn and with
εn2 edge-disjoint copies of H, then G contains δnv(H) copies of H.

Definition 1.1. Let H be a graph.

1. The linear removal threshold of H, denoted δlin-rem(H), is the infimum γ such that
δ(ε,H; γ) depends linearly on ε, i.e. δ(ε,H; γ) ≥ µε for some µ = µ(γ) > 0 and all
ε > 0.

2. The polynomial removal threshold of H, denoted δpoly-rem(H), is the infimum γ such
that δ(ε,H; γ) depends polynomially on ε, i.e. δ(ε,H; γ) ≥ µε1/µ for some µ =
µ(γ) > 0 and all ε > 0.

Trivially, δlin-rem(H) ≥ δpoly-rem(H). Fox and Wigderson [12] initiated the study of
δlin-rem(H) and δpoly-rem(H), and proved that δlin-rem(Kr) = δpoly-rem(Kr) =

2r−5
2r−3

for every
r ≥ 3, where Kr is the clique on r vertices. They further asked to determine the removal
lemma thresholds of odd cycles. Here we completely resolve this question. The following
theorem handles the polynomial removal threshold.

Theorem 1.2. δpoly-rem(C2k+1) =
1

2k+1
.

Theorem 1.2 also answers another question of Fox and Wigderson [12], of whether
δlin-rem(H) and δpoly-rem(H) can only obtain finitely many values on r-chromatic graphs H
for a given r ≥ 3. Theorem 1.2 shows that δpoly-rem(H) obtains infinitely many values for 3-
chromatic graphs. In contrast, δlin-rem(H) obtains only three possible values for 3-chromatic
graphs. Indeed, the following theorem determines δlin-rem(H) for every 3-chromatic H. An
edge xy of H is called critical if χ(H − xy) < χ(H).

Theorem 1.3. For a graph H with χ(H) = 3, it holds that

δlin-rem(H) =


1
2

H has no critical edge,
1
3

H has a critical edge and contains a triangle,
1
4

H has a critical edge and odd-girth(H) ≥ 5.

Theorems 1.2 and 1.3 show a separation between the polynomial and linear removal
thresholds, giving a sequence of graphs (i.e. C5, C7, . . . ) where the polynomial threshold
tends to 0 while the linear threshold is constant 1

4
. The proof of Theorem 1.3 appears in

the full version of this paper.
The parameters δpoly-rem and δlin-rem are related to two other well-studied minimum de-

gree thresholds: the chromatic threshold and the homomorphism threshold. The chromatic
threshold of a graph H is the infimum γ such that every n-vertex H-free graph G with
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δ(G) ≥ γn has bounded cromatic number, i.e., there exists C = C(γ) such that χ(G) ≤ C.
The study of the chromatic threshold originates in the work of Erdős and Simonovits [10]
from the ’70s. Following multiple works [4, 14, 15, 7, 5, 24, 25, 18, 6, 13, 19], the chromatic
threshold of every graph was determined by Allen et al. [1].

Moving on to the homomorphism threshold, we define it more generally for families
of graphs. The homomorphism threshold of a graph-family H, denoted δhom(H), is the
infimum γ for which there exists an H-free graph F = F (γ) such that every n-vertex H-
free graph G with δ(G) ≥ γn is homomorphic to F . When H = {H}, we write δhom(H).
This parameter was widely studied in recent years [17, 21, 16, 8, 23]. It turns out that
δhom is closely related to δpoly-rem(H), as the following theorem shows. For a graph H,
let IH denote the set of all minimal (with respect to inclusion) graphs H ′ such that H is
homomorphic to H ′.

Theorem 1.4. For every graph H, δpoly-rem(H) ≤ δhom(IH).

Note that IC2k+1
= {C3, C5, . . . , C2k+1}. Using this, the upper bound in Theorem 1.2

follows immediately by combining Theorem 1.4 with the result of Ebsen and Schacht [8]
that δhom({C3, C5, . . . , C2k+1}) = 1

2k+1
. The lower bound in Theorem 1.2 was established

in [12].

2 Proof of Theorem 1.4
We say that an n-vertex graph G is ε-far from a graph property P (e.g. being H-free for
a given graph H, or being homomorphic to a given graph F ) if one must delete at least
εn2 edges to make G satisfy P . Trivially, if G has εn2 edge-disjoint copies of H, then it is
ε-far from being H-free. The following result is from [20].

Theorem 2.1. For every graph F on f vertices and for every ε > 0, there is q = qF (ε) =
poly(f/ε), such that the following holds. If a graph G is ε-far from being homomorphic to
F , then for a sample of q vertices x1, . . . , xq ∈ V (G), taken uniformly with repetitions, it
holds that G[{x1, . . . , xq}] is not homomorphic to F with probability at least 2

3
.

Theorem 2.1 is proved in Section 2 of [20]. In fact, [20] proves a more general result on
property testing of the so-called 0/1-partition properties. Such a property is given by an
integer f and a function d : [f ]2 → {0, 1,⊥}, and a graph G satisfies the property if it has
a partition V (G) = V1 ∪ · · · ∪ Vf such that for every 1 ≤ i, j ≤ f (possibly i = j), it holds
that (Vi, Vj) is complete if d(i, j) = 1 and (Vi, Vj) is empty if d(i, j) = 0 (if d(i, j) =⊥ then
there are no restrictions). One can express the property of having a homomorphism into
F in this language, simply by setting d(i, j) = 0 for i = j and ij /∈ E(F ). In [20], the class
of these partition properties is denoted GPP0,1, and every such property is shown to be
testable by sampling poly(f/ε) vertices. This implies Theorem 2.1.

For a graphH on [h] and integers s1, s2, . . . , sh > 0, we denote byH[s1, . . . , sh] the blow-
up of H where each vertex i ∈ V (H) is replaced by a set Si of size si. The following lemma
is standard, and follows from the hypergraph version of the Kővári-Sós-Turán theorem [9].
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Lemma 2.2. Let H be a fixed graph on vertex set [h] and let s1, s2, . . . , sh ∈ N. There exists
a constant c = c(H, s1, . . . , sh) > 0 such that the following holds. Let G be an n-vertex
graph and V1, . . . , Vh ⊆ V (G). Suppose that G contains at least ρnh copies of H mapping i
to Vi for all i ∈ [h]. Then G contains at least cρ

1
c ·ns1+···+sh copies of H[s1, . . . , sh] mapping

Si to Vi for all i ∈ [h].

Proof of Theorem 1.4. Recall that IH is the set of minimal graphs H ′ (with respect to
inclusion) such that H is homomorphic to H ′. For convenience, put δ := δhom(IH). Our
goal is to show that δpoly-rem(H) ≤ δ + α for every α > 0. So fix α > 0 and let G be
a graph with minimum degree δ(G) ≥ (δ + α)n and with εn2 edge-disjoint copies of H.
By the definition of the homomorphism threshold, there is an IH-free graph F (depending
only on IH and α) such that if a graph G0 is IH-free and has minimum degree at least
(δ+ α

2
)·|V (G0)|, then G0 is homomorphic to F . Observe that if a graph G0 is homomorphic

to F then G0 is H-free, because F is free of any homomorphic image of H. It follows that G
is ε-far from being homomorphic to F , because G is ε-far from being H-free. Now we apply
Theorem 2.1. Let q = qF (ε) be given by Theorem 2.1. We assume that q � log(1/α)

α2 and
n� q2 without loss of generality. Sample q vertices x1, . . . , xq ∈ V (G) with repetition and
let X = {x1, . . . , xq}. By Theorem 2.1, G[X] is not homomorphic to F with probability at
least 2/3. As n� q2, the vertices x1, . . . , xq are pairwise-distinct with probability at least
0.99. Also, for every i ∈ [q], the number of indices j ∈ [q]\{i} with xixj ∈ E(G) dominates
a binomial distribution B(q − 1, δ(G)

n
). By the Chernoff bound (see e.g. [3, Appendix A])

and as δ(G) ≥ (δ + α)n, the number of such indices is at least (δ + α
2
)q with probability

1 − e−Ω(qα2). Taking the union bound over i ∈ [q], we get that δ(G[X]) ≥ (δ + α
2
)|X|

with probability at least 1 − qe−Ω(qα2) ≥ 0.9, as q � log(1/α)
α2 . Hence, with probability at

least 1
2
it holds that δ(G[X]) ≥ (δ + α

2
)|X| and G[X] is not homomorphic to F . If this

happens, then G[X] is not IH-free (by the choice of F ), hence G[X] contains a copy of
some H ′ ∈ IH . By averaging, there is H ′ ∈ IH such that G[X] contains a copy of H ′ with
probability at least 1

2|IH |
. Put k = |V (H ′)| and let M be the number of copies of H ′ in G.

The probability that G[X] contains a copy of H ′ is at most M( q
n
)k. Using the fact that

q = polyH,α(1
ε
), we conclude that M ≥ 1

2|IH |
· (n

q
)k ≥ polyH,α(ε)nk. As H → H ′, there

exists H ′′, a blow-up of H ′, such that H ′′ have the same number of vertices as H, and
that H ⊂ H ′′. By Lemma 2.2 for H ′ with Vi = V (G) for all i, there exist polyH,α(ε)nv(H′′)

copies of H ′′ in G, and thus polyH,α(ε)nv(H) copies of H. This completes the proof.

3 Concluding remarks and open questions
It would be interesting to determine the possible values of δpoly-rem(H) for 3-chromatic
graphs H. So far we know that 1

2k+1
is a value for each k ≥ 1. Is there a graph H with

1
5
< δpoly-rem(H) < 1

3
? Also, is it true that δpoly-rem(H) > 1

5
if H is not homomorphic to

C5?
Another question is whether the inequality in Theorem 1.4 is always tight, i.e. is it

always true that δpoly-rem(H) = δhom(IH)?
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Finally, we wonder whether the parameters δpoly-rem(H) and δlin-rem(H) are monotone,
in the sense that they do not increase when passing to a subgraph of H. We are not aware
of a way of proving this without finding δpoly-rem(H), δlin-rem(H).
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