The Minimum Degree Removal Lemma Thresholds

(Extended abstract)

Lior Gishboliner* Zhihan Jin* Benny Sudakov*

Abstract

The graph removal lemma is a fundamental result in extremal graph theory which says that for every fixed graph H and $\varepsilon>0$, if an n-vertex graph G contains εn^{2} edgedisjoint copies of H then G contains $\delta n^{v(H)}$ copies of H for some $\delta=\delta(\varepsilon, H)>0$. The current proofs of the removal lemma give only very weak bounds on $\delta(\varepsilon, H)$, and it is also known that $\delta(\varepsilon, H)$ is not polynomial in ε unless H is bipartite. Recently, Fox and Wigderson initiated the study of minimum degree conditions guaranteeing that $\delta(\varepsilon, H)$ depends polynomially or linearly on ε. We answer several questions of Fox and Wigderson on this topic.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-067

1 Introduction

The graph removal lemma, first proved by Ruzsa and Szemerédi [22], is a fundamental result in extremal graph theory. It also has important applications to additive combinatorics and property testing. The lemma states that for every fixed graph H and $\varepsilon>0$, if an n-vertex graph G contains εn^{2} edge-disjoint copies of H then G it contains $\delta n^{v(H)}$ copies of H, where $\delta=\delta(\varepsilon, H)>0$. Unfortunately, the current proofs of the graph removal lemma give only very weak bounds on $\delta=\delta(\varepsilon, H)$ and it is a very important problem to understand the dependence of δ on ε. The best known result, due to Fox [11], proves that $1 / \delta$ is at most a tower of exponents of height logarithmic in $1 / \varepsilon$. Ideally, one would like to have better

[^0]bounds on $1 / \delta$, where an optimal bound would be that δ is polynomial in ε. However, it is known [2] that $\delta(\varepsilon, H)$ is polynomial in ε only if H is bipartite. This situation led Fox and Wigderson [12] to initiate the study of minimum degree conditions which guarantee that $\delta(\varepsilon, H)$ depends polynomially or linearly on ε. Formally, let $\delta(\varepsilon, H ; \gamma)$ be the maximum $\delta \in[0,1]$ such that if G is an n-vertex graph with minimum degree at least γn and with εn^{2} edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H.

Definition 1.1. Let H be a graph .

1. The linear removal threshold of H, denoted $\delta_{\text {lin-rem }}(H)$, is the infimum γ such that $\delta(\varepsilon, H ; \gamma)$ depends linearly on ε, i.e. $\delta(\varepsilon, H ; \gamma) \geq \mu \varepsilon$ for some $\mu=\mu(\gamma)>0$ and all $\varepsilon>0$.
2. The polynomial removal threshold of H, denoted $\delta_{\text {poly-rem }}(H)$, is the infimum γ such that $\delta(\varepsilon, H ; \gamma)$ depends polynomially on ε, i.e. $\delta(\varepsilon, H ; \gamma) \geq \mu \varepsilon^{1 / \mu}$ for some $\mu=$ $\mu(\gamma)>0$ and all $\varepsilon>0$.

Trivially, $\delta_{\text {lin-rem }}(H) \geq \delta_{\text {poly-rem }}(H)$. Fox and Wigderson [12] initiated the study of $\delta_{\text {lin-rem }}(H)$ and $\delta_{\text {poly-rem }}(H)$, and proved that $\delta_{\text {lin-rem }}\left(K_{r}\right)=\delta_{\text {poly-rem }}\left(K_{r}\right)=\frac{2 r-5}{2 r-3}$ for every $r \geq 3$, where K_{r} is the clique on r vertices. They further asked to determine the removal lemma thresholds of odd cycles. Here we completely resolve this question. The following theorem handles the polynomial removal threshold.

Theorem 1.2. $\delta_{\text {poly-rem }}\left(C_{2 k+1}\right)=\frac{1}{2 k+1}$.
Theorem 1.2 also answers another question of Fox and Wigderson [12], of whether $\delta_{\text {lin-rem }}(H)$ and $\delta_{\text {poly-rem }}(H)$ can only obtain finitely many values on r-chromatic graphs H for a given $r \geq 3$. Theorem 1.2 shows that $\delta_{\text {poly-rem }}(H)$ obtains infinitely many values for 3chromatic graphs. In contrast, $\delta_{\text {lin-rem }}(H)$ obtains only three possible values for 3 -chromatic graphs. Indeed, the following theorem determines $\delta_{\text {lin-rem }}(H)$ for every 3 -chromatic H. An edge $x y$ of H is called critical if $\chi(H-x y)<\chi(H)$.

Theorem 1.3. For a graph H with $\chi(H)=3$, it holds that

$$
\delta_{\text {lin-rem }}(H)= \begin{cases}\frac{1}{2} & H \text { has no critical edge, } \\ \frac{1}{3} & H \text { has a critical edge and contains a triangle, } \\ \frac{1}{4} & H \text { has a critical edge and } \operatorname{odd}-\operatorname{girth}(H) \geq 5\end{cases}
$$

Theorems 1.2 and 1.3 show a separation between the polynomial and linear removal thresholds, giving a sequence of graphs (i.e. C_{5}, C_{7}, \ldots) where the polynomial threshold tends to 0 while the linear threshold is constant $\frac{1}{4}$. The proof of Theorem 1.3 appears in the full version of this paper.

The parameters $\delta_{\text {poly-rem }}$ and $\delta_{\text {lin-rem }}$ are related to two other well-studied minimum degree thresholds: the chromatic threshold and the homomorphism threshold. The chromatic threshold of a graph H is the infimum γ such that every n-vertex H-free graph G with
$\delta(G) \geq \gamma n$ has bounded cromatic number, i.e., there exists $C=C(\gamma)$ such that $\chi(G) \leq C$. The study of the chromatic threshold originates in the work of Erdős and Simonovits [10] from the '70s. Following multiple works [4, 14, 15, 7, 5, 24, 25, 18, 6, 13, 19], the chromatic threshold of every graph was determined by Allen et al. [1].

Moving on to the homomorphism threshold, we define it more generally for families of graphs. The homomorphism threshold of a graph-family \mathcal{H}, denoted $\delta_{\text {hom }}(\mathcal{H})$, is the infimum γ for which there exists an \mathcal{H}-free graph $F=F(\gamma)$ such that every n-vertex \mathcal{H} free graph G with $\delta(G) \geq \gamma n$ is homomorphic to F. When $\mathcal{H}=\{H\}$, we write $\delta_{\text {hom }}(H)$. This parameter was widely studied in recent years [17, 21, 16, 8, 23]. It turns out that $\delta_{\text {hom }}$ is closely related to $\delta_{\text {poly-rem }}(H)$, as the following theorem shows. For a graph H, let \mathcal{I}_{H} denote the set of all minimal (with respect to inclusion) graphs H^{\prime} such that H is homomorphic to H^{\prime}.

Theorem 1.4. For every graph $H, \delta_{\text {poly-rem }}(H) \leq \delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$.
Note that $\mathcal{I}_{C_{2 k+1}}=\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$. Using this, the upper bound in Theorem 1.2 follows immediately by combining Theorem 1.4 with the result of Ebsen and Schacht [8] that $\delta_{\text {hom }}\left(\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}\right)=\frac{1}{2 k+1}$. The lower bound in Theorem 1.2 was established in [12].

2 Proof of Theorem 1.4

We say that an n-vertex graph G is ε-far from a graph property \mathcal{P} (e.g. being H-free for a given graph H, or being homomorphic to a given graph F) if one must delete at least εn^{2} edges to make G satisfy \mathcal{P}. Trivially, if G has εn^{2} edge-disjoint copies of H, then it is ε-far from being H-free. The following result is from [20].

Theorem 2.1. For every graph F on f vertices and for every $\varepsilon>0$, there is $q=q_{F}(\varepsilon)=$ poly (f / ε), such that the following holds. If a graph G is ε-far from being homomorphic to F, then for a sample of q vertices $x_{1}, \ldots, x_{q} \in V(G)$, taken uniformly with repetitions, it holds that $G\left[\left\{x_{1}, \ldots, x_{q}\right\}\right]$ is not homomorphic to F with probability at least $\frac{2}{3}$.

Theorem 2.1 is proved in Section 2 of [20]. In fact, [20] proves a more general result on property testing of the so-called 0/1-partition properties. Such a property is given by an integer f and a function $d:[f]^{2} \rightarrow\{0,1, \perp\}$, and a graph G satisfies the property if it has a partition $V(G)=V_{1} \cup \cdots \cup V_{f}$ such that for every $1 \leq i, j \leq f$ (possibly $i=j$), it holds that $\left(V_{i}, V_{j}\right)$ is complete if $d(i, j)=1$ and $\left(V_{i}, V_{j}\right)$ is empty if $d(i, j)=0$ (if $d(i, j)=\perp$ then there are no restrictions). One can express the property of having a homomorphism into F in this language, simply by setting $d(i, j)=0$ for $i=j$ and $i j \notin E(F)$. In [20], the class of these partition properties is denoted $\mathcal{G} \mathcal{P} \mathcal{P}_{0,1}$, and every such property is shown to be testable by sampling $\operatorname{poly}(f / \varepsilon)$ vertices. This implies Theorem 2.1.

For a graph H on $[h]$ and integers $s_{1}, s_{2}, \ldots, s_{h}>0$, we denote by $H\left[s_{1}, \ldots, s_{h}\right]$ the blowup of H where each vertex $i \in V(H)$ is replaced by a set S_{i} of size s_{i}. The following lemma is standard, and follows from the hypergraph version of the Kövári-Sós-Turán theorem [9].

Lemma 2.2. Let H be a fixed graph on vertex set $[h]$ and let $s_{1}, s_{2}, \ldots, s_{h} \in \mathbb{N}$. There exists a constant $c=c\left(H, s_{1}, \ldots, s_{h}\right)>0$ such that the following holds. Let G be an n-vertex graph and $V_{1}, \ldots, V_{h} \subseteq V(G)$. Suppose that G contains at least ρn^{h} copies of H mapping i to V_{i} for all $i \in[h]$. Then G contains at least $c \rho^{\frac{1}{c}} \cdot n^{s_{1}+\cdots+s_{h}}$ copies of $H\left[s_{1}, \ldots, s_{h}\right]$ mapping S_{i} to V_{i} for all $i \in[h]$.

Proof of Theorem 1.4. Recall that \mathcal{I}_{H} is the set of minimal graphs H^{\prime} (with respect to inclusion) such that H is homomorphic to H^{\prime}. For convenience, put $\delta:=\delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$. Our goal is to show that $\delta_{\text {poly-rem }}(H) \leq \delta+\alpha$ for every $\alpha>0$. So fix $\alpha>0$ and let G be a graph with minimum degree $\delta(G) \geq(\delta+\alpha) n$ and with εn^{2} edge-disjoint copies of H. By the definition of the homomorphism threshold, there is an \mathcal{I}_{H}-free graph F (depending only on \mathcal{I}_{H} and α) such that if a graph G_{0} is \mathcal{I}_{H}-free and has minimum degree at least $\left(\delta+\frac{\alpha}{2}\right) \cdot\left|V\left(G_{0}\right)\right|$, then G_{0} is homomorphic to F. Observe that if a graph G_{0} is homomorphic to F then G_{0} is H-free, because F is free of any homomorphic image of H. It follows that G is ε-far from being homomorphic to F, because G is ε-far from being H-free. Now we apply Theorem 2.1. Let $q=q_{F}(\varepsilon)$ be given by Theorem 2.1. We assume that $q \gg \frac{\log (1 / \alpha)}{\alpha^{2}}$ and $n \gg q^{2}$ without loss of generality. Sample q vertices $x_{1}, \ldots, x_{q} \in V(G)$ with repetition and let $X=\left\{x_{1}, \ldots, x_{q}\right\}$. By Theorem 2.1, $G[X]$ is not homomorphic to F with probability at least $2 / 3$. As $n \gg q^{2}$, the vertices x_{1}, \ldots, x_{q} are pairwise-distinct with probability at least 0.99. Also, for every $i \in[q]$, the number of indices $j \in[q] \backslash\{i\}$ with $x_{i} x_{j} \in E(G)$ dominates a binomial distribution $\mathrm{B}\left(q-1, \frac{\delta(G)}{n}\right)$. By the Chernoff bound (see e.g. [3, Appendix A]) and as $\delta(G) \geq(\delta+\alpha) n$, the number of such indices is at least $\left(\delta+\frac{\alpha}{2}\right) q$ with probability $1-e^{-\Omega\left(q \alpha^{2}\right)}$. Taking the union bound over $i \in[q]$, we get that $\delta(G[X]) \geq\left(\delta+\frac{\alpha}{2}\right)|X|$ with probability at least $1-q e^{-\Omega\left(q \alpha^{2}\right)} \geq 0.9$, as $q \gg \frac{\log (1 / \alpha)}{\alpha^{2}}$. Hence, with probability at least $\frac{1}{2}$ it holds that $\delta(G[X]) \geq\left(\delta+\frac{\alpha}{2}\right)|X|$ and $G[X]$ is not homomorphic to F. If this happens, then $G[X]$ is not \mathcal{I}_{H}-free (by the choice of F), hence $G[X]$ contains a copy of some $H^{\prime} \in \mathcal{I}_{H}$. By averaging, there is $H^{\prime} \in \mathcal{I}_{H}$ such that $G[X]$ contains a copy of H^{\prime} with probability at least $\frac{1}{2\left|\mathcal{I}_{H}\right|}$. Put $k=\left|V\left(H^{\prime}\right)\right|$ and let M be the number of copies of H^{\prime} in G. The probability that $G[X]$ contains a copy of H^{\prime} is at most $M\left(\frac{q}{n}\right)^{k}$. Using the fact that $q=\operatorname{poly}_{H, \alpha}\left(\frac{1}{\varepsilon}\right)$, we conclude that $M \geq \frac{1}{2\left|\mathcal{I}_{H}\right|} \cdot\left(\frac{n}{q}\right)^{k} \geq \operatorname{poly}_{H, \alpha}(\varepsilon) n^{k}$. As $H \rightarrow H^{\prime}$, there exists $H^{\prime \prime}$, a blow-up of H^{\prime}, such that $H^{\prime \prime}$ have the same number of vertices as H, and that $H \subset H^{\prime \prime}$. By Lemma 2.2 for H^{\prime} with $V_{i}=V(G)$ for all i, there exist poly ${ }_{H, \alpha}(\varepsilon) n^{v\left(H^{\prime \prime}\right)}$ copies of $H^{\prime \prime}$ in G, and thus poly ${ }_{H, \alpha}(\varepsilon) n^{v(H)}$ copies of H. This completes the proof.

3 Concluding remarks and open questions

It would be interesting to determine the possible values of $\delta_{\text {poly-rem }}(H)$ for 3 -chromatic graphs H. So far we know that $\frac{1}{2 k+1}$ is a value for each $k \geq 1$. Is there a graph H with $\frac{1}{5}<\delta_{\text {poly-rem }}(H)<\frac{1}{3}$? Also, is it true that $\delta_{\text {poly-rem }}(H)>\frac{1}{5}$ if H is not homomorphic to C_{5} ?

Another question is whether the inequality in Theorem 1.4 is always tight, i.e. is it always true that $\delta_{\text {poly-rem }}(H)=\delta_{\text {hom }}\left(\mathcal{I}_{H}\right)$?

Finally, we wonder whether the parameters $\delta_{\text {poly-rem }}(H)$ and $\delta_{\text {lin-rem }}(H)$ are monotone, in the sense that they do not increase when passing to a subgraph of H. We are not aware of a way of proving this without finding $\delta_{\text {poly-rem }}(H), \delta_{\text {lin-rem }}(H)$.

References

[1] Peter Allen, Julia Böttcher, Simon Griffiths, Yoshiharu Kohayakawa, and Robert Morris. The chromatic thresholds of graphs. Advances in Mathematics, 235:261-295, 2013. 1
[2] Noga Alon. Testing subgraphs in large graphs. Random Structures 8 Algorithms, 21(3-4):359-370, 2002. 1
[3] Noga Alon and Joel H. Spencer. The probabilistic method. John Wiley \& Sons, 2016. 2
[4] Béla Andrásfai, Paul Erdös, and Vera T Sós. On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Mathematics, 8(3):205-218, 1974. 1
[5] Stephan Brandt. On the structure of dense triangle-free graphs. Combinatorics, Probability and Computing, 8(3):237-245, 1999. 1
[6] Stephan Brandt and Stéphan Thomassé. Dense triangle-free graphs are four-colorable: A solution to the Erdős-Simonovits problem. preprint, 2011. 1
[7] Chuan-Chong Chen, Guoping P Jin, and Khee Meng Koh. Triangle-free graphs with large degree. Combinatorics, Probability and Computing, 6(4):381-396, 1997. 1
[8] Oliver Ebsen and Mathias Schacht. Homomorphism thresholds for odd cycles. Combinatorica, 40(1):39-62, 2020. 1, 1
[9] Paul Erdős. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics, 2(3):183-190, 1964. 2
[10] Paul Erdős and Miklós Simonovits. On a valence problem in extremal graph theory. Discrete Mathematics, 5(4):323-334, 1973. 1
[11] Jacob Fox. A new proof of the graph removal lemma. Annals of Mathematics, pages 561-579, 2011. 1
[12] Jacob Fox and Yuval Wigderson. Minimum degree and the graph removal lemma. Journal of Graph Theory, 2021. 1, 1, 1, 1
[13] Wayne Goddard and Jeremy Lyle. Dense graphs with small clique number. Journal of Graph Theory, 66(4):319-331, 2011. 1
[14] Roland Häggkvist. Odd cycles of specified length in non-bipartite graphs. In NorthHolland Mathematics Studies, volume 62, pages 89-99. Elsevier, 1982. 1
[15] Guoping Jin. Triangle-free four-chromatic graphs. Discrete Mathematics, 145(1-3):151-170, 1995. 1
[16] Shoham Letzter and Richard Snyder. The homomorphism threshold of $\left\{C_{3}, C_{5}\right\}$-free graphs. Journal of Graph Theory, 90(1):83-106, 2019. 1
[17] Tomasz Łuczak. On the structure of triangle-free graphs of large minimum degree. Combinatorica, 26(4):489-493, 2006. 1
[18] Tomasz Łuczak and Stéphan Thomassé. Coloring dense graphs via VC-dimension. arXiv preprint arXiv:1007.1670, 2010. 1
[19] Jeremy Lyle. On the chromatic number of H-free graphs of large minimum degree. Graphs and Combinatorics, 27(5):741-754, 2011. 1
[20] Yonatan Nakar and Dana Ron. On the testability of graph partition properties. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 2, 2
[21] Heiner Oberkampf and Mathias Schacht. On the structure of dense graphs with bounded clique number. Combinatorics, Probability and Computing, 29(5):641-649, 2020. 1
[22] Imre Z. Ruzsa and Endre Szemerédi. Triple systems with no six points carrying three triangles. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai,, volume 18, pages 939-945. North-Holland, Amsterdam-New York, 1978. 1
[23] Maya Sankar. Homotopy and the homomorphism threshold of odd cycles. arXiv preprint arXiv:2206.07525, 2022. 1
[24] Carsten Thomassen. On the chromatic number of triangle-free graphs of large minimum degree. Combinatorica, 22(4):591-596, 2002. 1
[25] Carsten Thomassen. On the chromatic number of pentagon-free graphs of large minimum degree. Combinatorica, 27(2):241-243, 2007. 1

[^0]: *Department of Mathematics, ETH, Zürich, Switzerland. Research supported in part by SNSF grant 200021_196965. Email: \{lior.gishboliner, zhihan.jin, benjamin.sudakov\}@math.ethz.ch.

