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Abstract
A classical result of Erdős, Lovász and Spencer from the late 1970s asserts that

the dimension of the feasible region of homomorphic densities of graphs with at most
k vertices in large graphs is equal to the number of connected graphs with at most k
vertices. Glebov et al. showed that pattern densities of indecomposable permutations
are independent, i.e., the dimension of the feasible region of densities of k-patterns is
at least the number of non-trivial indecomposable permutations of size at most k. We
identify a larger set of permutations, which are called Lyndon permutations, whose
pattern densities are independent, and show that the dimension of the feasible region
of densities of k-patterns is equal to the number of non-trivial Lyndon permutations
of size at most k.
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1 Introduction
A classical result of Erdős, Lovász and Spencer [8] describes the independence of homomor-
phic densities of graphs in large graphs. Informally speaking, they showed that homomor-
phic densities of connected graphs are independent and actually determine the densities of
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all graphs. We now state their result formally using the language of the theory of graph
limits (referring to Section 2 for definitions). Let Gk be the set of all graphs with at most k
vertices and Gck be the set of all connected graphs with at most k vertices; t(G,W ) denotes
the homomorphism density of a graph G in a graphon W . The aforementioned result of
Erdős, Lovász and Spencer [8] asserts that for every k ∈ N, there exist x0 ∈ [0, 1]G

c
k and

ε > 0 such that for every x ∈ Bε(x0) ⊆ [0, 1]G
c
k , there exists a graphon W such that

t(G,W )G∈Gc
k

= x. In addition, there exists a function f : [0, 1]G
c
k → [0, 1]Gk , independent

of W , and such that f(t(G,W )G∈Gc
k
) = t(G,W )G∈Gk

. In other words, the dimension of
the feasible region of homomorphic densities of graphs with at most k vertices in graphons
(large graphs) is equal to the number of connected graphs with at most k vertices.

We determine the dimension of the feasible region of densities of k-patterns in permu-
tations; again we refer to Section 2 for definitions. Glebov et al. [10] showed that this
dimension is at least the number of non-trivial indecomposable permutations of size at
most k. Borga and the last author [2] observed utilizing a result of Vargas [20] that this
dimension is at most the number of non-trivial Lyndon permutations of size at most k,
and conjectured [2, Conjecture 1.3] that this bound is tight. Our main result asserts that
this is indeed the case. Similarly to [10], our argument is based on perturbing a permuton
comprised of blow-ups of indecomposable permutations. However, to be able to control
the densities of the larger set of all Lyndon permutations, we choose a suitable order of the
blow ups of indecomposable permutations and analyze the interplay between the blow-ups
using unique decomposition properties into Lyndon words [19].

2 Combinatorial limits
We now introduce notation used throughout this extended abstract. In addition to the
monograph by Lovász [16], which provides a comprehensive introduction to the theory of
graph limits, we refer the reader to [3–5, 17, 18] for basic results concerning graph limits
and to [1, 6, 9, 11–15] for results developing and concerning permutation limits.

2.1 Graph limits

If H and G are two graphs, the homomorphism density of H in G, denoted by t(H,G), is
the probability that a uniformly random function f : V (H) → V (G), is a homomorphism
of H to G. A sequence (Gn)n∈N of graphs is convergent if the number of vertices of Gn

tends to infinity and the values of t(H,Gn) converge for every H.
A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1], i.e., W (x, y) =

W (y, x) for (x, y) ∈ [0, 1]2. The homomorphism density of a graph H in a graphon W is
defined by

t(H,W ) =

∫
[0,1]V (H)

∏
uv∈E(H)

W (xu, xv)dxV (H).

A graphon W is a limit of a convergent sequence (Gn)n∈N of graphs if t(H,W ) is the limit
of t(H,Gn) for every graph H. Every convergent sequence of graphs has a limit graphon
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and every graphon is a limit of a convergent sequence of graphs as shown by Lovász and
Szegedy [17]; also see [7] for a relation to exchangeable arrays.

2.2 Permutations

A permutation of size n is a bijective function π from [n] to [n] (we use [n] to denote
the set of the first n positive integers). The permutation π is often viewed as a word
π(1)π(2) · · · π(n) and its size is denoted by |π|. The pattern induced by elements 1 ≤ k1 <
· · · < km ≤ n is the unique permutation σ : [m] → [m] such that σ(i) < σ(i′) if and
only if π(ki) < π(ki′) for all i, i′ ∈ [m]. The density of a permutation σ in a permutation
π, denoted by d(σ, π), is the probability that the pattern induced by |σ| elements chosen
uniformly at random is equal to σ. Similarly to the graph case, we say that a sequence
(πn)n∈N of permutations is convergent if the sizes of πn tend to infinity and the sequence
of densities d(σ, πn) converges for every permutation σ.

We say that a permutation is non-trivial if its size is at least two. The direct sum of
two permutations π1 and π2 is the permutation π of size |π1|+ |π2| such that π(k) = π1(k)
for k ∈ [|π1|] and π(|π1|+ k) = |π1|+ π2(k) for k ∈ [|π2|]; the permutation π is denoted by
π1⊕π2. A permutation is indecomposable if it is not a direct sum of two permutations; note
that every permutation is a (possibly iterated) direct sum of indecomposable permutations.

A word w1 · · ·wn is Lyndon if no proper suffix of the word w1 · · ·wn is smaller (in the
lexicographic order) than the word w1 · · ·wn itself. For example, the word aab is Lyndon
but the word aba is not. We want to use indecomposable permutations as the alphabet
to form Lyndon words. For this we introduce an order ≺ on the set of indecomposable
permutations such that indecomposable permutations of smaller size precede those of larger
size. Indecomposable permutations of the same size are ordered lexicographically. Hence,
the first five letters are associated with the following five (indecomposable) permutations:
1 ≺ 21 ≺ 231 ≺ 312 ≺ 321. As mentioned above every permutation can be uniquely
decomposed into a direct sum of indecomposable permutations and therefore corresponds
to a word over the alphabet consisting of indecomposable permutations. A permutation
π is Lyndon if the word corresponding to the decomposition of π into indecomposable
permutations is Lyndon. For example, the permutation 21 ⊕ 231 = 21453 is Lyndon but
the permutations 21⊕ 1 = 213 and 21⊕ 21 = 2143 are not. Note that all indecomposable
permutations are Lyndon.

2.3 Permutation limits

A permuton is a probability measure Π on the σ-algebra of Borel subsets from [0, 1]2 that
has uniform marginals, i.e.,

Π([a, b]× [0, 1]) = Π([0, 1]× [a, b]) = b− a

for all 0 ≤ a ≤ b ≤ 1. A Π-random permutation of size n is the permutation σ obtained
by sampling n points according to the measure Π, sorting them according to their x-
coordinates, say (x1, y1), . . . , (xn, yn) for x1 < · · · < xn (note that the x-coordinates are
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pairwise distinct with probability 1), and defining σ so that σ(i) < σ(j) if and only if
yi < yj for i, j ∈ [n]. Finally, the density of a permutation σ in a permuton Π, which is
denoted by d(σ,Π), is the probability that the Π-random permutation of size |σ| is σ.

A permuton Π is a limit of a convergent sequence (πn)n∈N of permutations if, for
every permutation σ, d(σ,Π) is the limit of d(σ, πn). Every permuton is a limit of a
convergent sequence of permutations and every convergent sequence of permutations has
a limit permuton [11,12].

3 Main result
Let Pk be the set of all permutations of size at most k, PLk the set of all non-trivial Lyndon
permutations of size at most k. Our main result is the following.

Theorem 1. For every k ∈ N, there exists x0 ∈ [0, 1]P
L
k and ε > 0 such that for every

x ∈ Bε(x0) ⊆ [0, 1]P
L
k there exists a permuton Π such that

d(σ,Π)σ∈PL
k

= x.

In addition, there exists a function f : [0, 1]P
L
k → [0, 1]Pk such that

f
(
d(σ,Π)σ∈PL

k

)
= d(σ,Π)σ∈Pk

for every permuton Π.

We next sketch the proof of Theorem 1. We start with the existence of the function
f ; we remark that the existence of the function f follows from the results presented in the
extended abstract [20], and we outline the argument here. Let π be a permutation and
let π = π1 ⊕ · · · ⊕ πk be the (unique) direct sum formed by indecomposable permutations.
Further, let w1 · · ·wk be the word corresponding to π1 ⊕ · · · ⊕ πk; it is well-known that
the word w1 · · ·wk can be uniquely expressed as a concatenation of Lyndon words in non-
increasing lexicographic order, and let π′

1, . . . , π
′
` be the permutations corresponding to

these Lyndon words. For example, if π = 1324576 = 1 ⊕ 21 ⊕ 1 ⊕ 1 ⊕ 21, then π′
1 is

1 ⊕ 21 = 132 and π′
2 is 1 ⊕ 1 ⊕ 21 = 1243 which are both Lyndon. It can be shown

using [19, Theorem 3.1.1(a)] that the constituents of the product of π′
1 × . . . × π′

` (in
the flag algebra sense) are only permutations that either are direct sums of fewer than k
indecomposable permutations or are direct sums of k indecomposable permutations but
are lexicographically at least as large as π. It follows that every permutation σ that is not
Lyndon can be expressed as a polynomial of Lyndon permutations of size at most |σ| (in
the flag algebra sense), which implies the existence of the function f ; in fact, the function
f is polynomial.

We next sketch the proof of the main part of Theorem 1, which yields the (matching)
lower bound on the dimension on the feasible region of pattern densities. For the lower
bound, we use a different mapping of indecomposable permutations to letters; note that this
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Figure 1: The permuton Π comprised of the “blow-up permutons” of the permutations 321,
312, 231, 21 and 132; the scaling factors si and ti,j are placed near their associated parts.

changes which permutations are Lyndon. The compression of a permutation π, which is
denoted by π̂, is the permutation obtained by (iteratively) “merging” consecutive elements
that increase by one; for example 2̂31 = 21, 3̂412 = 21, 2̂341 = 21, and 1̂342 = 132. The
new order < on indecomposable permutations is defined using ≺ on their compressions,
and if two different indecomposable permutations have the same compression, then ≺ is
used directly. For example, 3412 < 321, and so the letter associated with 3412 precedes
the letter associated with 321. Note that while the permutation 321 ⊕ 3412 = 3216745 is
Lyndon with respect to ≺ it is not with respect to <. However, it can be shown that the
number of Lyndon permutations of size k is the same with respect to ≺ and to <.

Fix k and let π1, . . . , πN be all non-trivial Lyndon permutations of size at most k listed
in the decreasing (lexicographic) order of the words corresponding to their indecomposable
blocks; we emphasize that the modified order < is used both to define which permutations
are Lyndon and to order the Lyndon permutations. For s1, . . . , sN ∈ [0, 1] and ti,j ∈ [0, 1],
i ∈ [N ] and j ∈ [|πi|] such that the sum of ti,j’s is at most one, we define a permuton Π to be
the permuton comprised of the “blow-up permutons” of the permutations π1, . . . , πN . For
each i ∈ [N ] the “blow-up permuton” uses a segment of horizontal length ti,j corresponding
to the j’th point of the permutation πi, j ∈ [|πi|]. The “blow-up permutons” then get scaled
by s1, . . . , sN , respectively; see Figure 1 for illustration. We next consider the Jacobian
matrix of the densities d(π1,Π), . . . , d(πN ,Π) viewed as functions of s1, . . . , sN and observe
that its determinant is a polynomial in the variables si and ti,j and the coefficient of the
monomial formed by the product of all ti,j is non-zero; the latter is argued by making use
of [19, Theorem 3.1.1(a)]. Hence, the Jacobian determinant is not identically zero and so
there exists a choice of si and ti,j such that the determinant is non-zero, which implies the
existence of the point x0 ∈ [0, 1]P

L
k and the real ε > 0 from the statement of Theorem 1.
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