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Abstract

We study the Turán problem for highly symmetric bipartite graphs arising from
geometric shapes and periodic tilings commonly found in nature.

1. The prism C˝
2` :“ C2` ˝K2 is the graph consisting of two vertex disjoint 2`-cycles

and a matching pairing the corresponding vertices of these two cycles. We show
that for every ` ě 4, expn,C˝

2`q “ Θpn3{2q. This resolves a conjecture of He, Li
and Feng.

2. The hexagonal tiling in honeycomb is one of the most natural structures in the
real world. We show that the extremal number of honeycomb graphs has the
same order of magnitude as their basic building unit 6-cycles.

3. We also consider bipartite graphs from quadrangulations of the cylinder and the
torus. We prove near optimal bounds for both configurations. In particular, our
method gives a very short proof of a tight upper bound for the extremal number
of the 2-dimensional grid, improving a recent result of Bradač, Janzer, Sudakov
and Tomon.

Our proofs mix several ideas, including shifting embedding schemes, weighted homo-
morphism and subgraph counts and asymmetric dependent random choice.
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1 Introduction
The Turán problem, one of the most central topics in extremal combinatorics, is concerned
with determining the maximum density of graphs without containing a given graph as a
subgraph. Formally, for a graph F , the extremal number of F , denoted by expn, F q, is the
maximum number of edges in an n-vertex graph not containing F as a subgraph. The
celebrated Erdős-Stone-Simonovits Theorem [9, 12] asymptotically solves the problem when
χpF q ě 3. However, for bipartite graphs, not even the order of magnitude is known in general.
Turán [21] in 1941 proposed the study of the five graphs from platonic solids, and his result
covers the tetrahedron graphK4. The problem of octahedron, dodecahedron and icosahedron
graphs were later resolved by Erdős and Simonovits [11] and by Simonovits [19, 20]
respectively; while the innocent looking cube graph remains elusive. Two basic classes of
bipartite graphs with high symmetry are even cycles and complete bipartite graphs; both
of them have been widely studied for several decades [2, 3, 5, 6, 8, 15, 17, 22]. For more on
the bipartite Turán problem, we refer the reader to the comprehensive survey of Füredi
and Simonovits [13].

In this paper, we continue this line of study and determine the order of magnitude of
the extremal number for several highly symmetric bipartite graphs stemming from certain
geometric shapes and periodic tilings, including the prism, the grid, the honeycomb and
certain quadrangulations of the cylinder and the torus.

1.1 The prisms

The 2`-prism C˝
2` :“ C2` ˝K2 is the Cartesian product of 2`-cycle with an edge, consisting

of two vertex disjoint C2` and a matching joining the corresponding vertices on these two
cycles. As C˝

2` contains many 4-cycles, we have a lower bound expn,C˝
2`q ě expn,C4q “

Ωpn3{2q. Note that C˝
4 is the notorious cube graph, for which the best known bounds are

Ωpn3{2q ď expn,C˝
4q ď Opn8{5q [10, 18]. Studying the 2`-prism C˝

2` could shed some light
on the cube problem. An upper bound expn,C˝

2`q “ Opn5{3q can be easily obtained via the
celebrated dependent random choice method [1].

Very recently, He, Li and Feng [14] studied the odd prisms, determined expn,C˝
2k`1q for

any k ě 1 for large n and characterized the extremal graphs. They proposed the following
conjecture to break the 5{3 barrier for 2`-prism.



Extremal number of graphs from geometric shapes 465

Conjecture 1 ([14]). For every ` ě 2, there exists c “ cp`q ą 0 such that expn,C˝
2`q “

Opn5{3´cq.

Our first result provides an optimal upper bound for C˝
2` for every ` ě 4.

Theorem 1.1. For any integer ` ě 4, we have

expn,C˝
2`q “ Θ`pn

3{2
q.

We remark that larger prisms are easier to handle. We can provide a shorter and
different proof of expn,C˝

2`q “ O`pn
3{2q for ` ě 7, which can also be used to show that

expn,C˝
6q “ Opn21{13plog nq24{13q. This, together with the known bound for the cube and

Theorem 1.1, proves Conjecture 1.
It is worth mentioning a closely related conjecture of Erdős. A graph is r-degenerate

if each of its subgraphs has minimum degree at most r. Erdős [7] conjectured that for
a bipartite H, expn,Hq “ Opn3{2q if and only if H is 2-degenerate. This conjecture was
recently disproved by Janzer [16], who constructed, for each ε ą 0, a 3-regular bipartite
graph H with girth 6 such that expn,Hq “ Opn4{3`εq. Theorem 1.1 provides a family of
3-regular girth-4 counterexamples.

1.2 The honeycomb

The hexagonal tiling in honeycomb is one of the most common geometric structures,
appearing in nature in many crystals. It is also the densest way to pack circles in the plane.
As the honeycomb graph H of any size contains C6 as a subgraph, we have a lower bound
expn,Hq ě expn,C6q “ Ωpn4{3q.

Our second result is a matching upper bound Opn4{3q, showing that the hexagonal tiling
appears soon after the appearance of a single hexagon. In particular, we consider the
following graph Hk,` (see Figure 1), which contains any (finite truncation of a) honeycomb
graph as a subgraph when k and ` are sufficiently large.

Definition. For an odd integer k ě 1 and even integer ` ě 2, let Hk,` be the graph with
vertex set V pHk,`q “ txi,j : 1 ď i ď k, 1 ď j ď `u, where xk,1 “ xk,3 “ ¨ ¨ ¨ “ xk,`´1 “ u and
x1,2 “ x1,4 “ ¨ ¨ ¨ “ x1,` “ v (but all the other vertices are distinct) and edge set

EpHk,`q “ txi,jxi,j`1 : 1 ď i ď k, 1 ď j ď `´ 1u Y tx2i´1,jx2i,j : 1 ď i ď k{2, 1 ď j ď `, j is oddu
Y tx2i,jx2i`1,j : 1 ď i ď k{2, 1 ď j ď `, j is evenu.

Theorem 1.2. For positive odd integers k ě 1 and ` ě 2,

expn,Hk,`q “ Θk,`pn
4{3
q.
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Figure 1: The first graph is H7,12. In the second graph, identifying the blue vertices (in the
same column) yields a copy of P11,4; if additionally the red vertices (in the same row) are
identified, then we obtain a copy of T10,4.

1.3 The grid

We will also give an improved bound for the extremal number of the grid. For a positive
integer t, Ft,t is the graph with vertex set rts ˆ rts in which two vertices are joined by an
edge if they differ in exactly one coordinate and in that coordinate they differ by one.
Bradač, Janzer, Sudakov and Tomon [4] determined the extremal number of Ft,t up to a
multiplicative constant which depends on t, showing that for any t ě 2,

Ωpt1{2n3{2
q ď expn, Ft,tq ď eOpt

5qn3{2.

They have asked to determine the correct dependence on t. We make substantial
progress on this question by giving a very short proof of the following bound, which shows
that the dependence on t is polynomial.

Theorem 1.3. For any positive integer t, if n is sufficiently large in terms of t, then

expn, Ft,tq ď 5t3{2n3{2.

It would be interesting to determine the correct power of t in expn, Ft,tq.

1.4 Quadrangulations of cylinder and torus

Next, we consider certain quadrangulations of the cylinder and the torus.

Definition (Quadrangulation of a cylinder). For integers k, ` ě 2, let Pk,` be the graph
with vertex set V pPk,`q “ txi,j : 1 ď i ď k, 1 ď j ď `u, and edge set

EpPk,`q “ txi,jxi`1,j : 1 ď i ď k ´ 1, 1 ď j ď `u Y txi,j`1xi`1,j : 1 ď i ď k ´ 1, 1 ď j ď `, i is oddu
Y txi,jxi`1,j`1 : 1 ď i ď k ´ 1, 1 ď j ď `, i is evenu,

where xi,``1 “ xi,1 for all i P rks.
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Clearly, the extremal number of such a quadrangulated cylinder is at least that of the
4-cycle. Our next result infers that in fact they are of the same order of magnitude.

Theorem 1.4. Let k and ` be positive integers. Then we have

expn, Pk,`q “ Θk,`pn
3{2
q.

If k is even and we glue the two sides of the cylinder Pk`1,`, then we obtain a torus, see
Figure 1.

Definition (Quadrangulation of a torus). For an even integer k ě 4 and integer ` ě 2, let
Tk,` be the graph with vertex set V pTk,`q “ txi,j : 1 ď i ď k, 1 ď j ď `u, and edge set

EpTk,`q “ txi,jxi`1,j : 1 ď i ď k, 1 ď j ď `u Y txi,j`1xi`1,j : 1 ď i ď k, 1 ď j ď `, i is oddu
Y txi,jxi`1,j`1 : 1 ď i ď k, 1 ď j ď `, i is evenu,

where xk`1,j “ x1,j for all j P r`s and xi,``1 “ xi,1 for all i P rks.

For the quadrangulated torus, we provide a general upper bound as follows.

Theorem 1.5. For an even integer k ě 4 and an integer ` ě 2, we have

expn, Tk,`q “ Ok,`pn
3
2
` `

k plog nq2q.

Thus, when k is sufficiently large compared to `, the exponent can be arbitrarily close to
3{2. On the other hand, the exponent is always strictly greater than 3{2 as the probabilistic
deletion method yields the lower bound expn, Tk,`q “ Ωk,`pn

3
2
` 3

4k`´2 q.

2 Ideas of proofs
In this section, we briefly discuss some key ideas in our proofs.

2.1 Shifting embedding schemes: Grid, quadrangulated cylinder,
torus and honeycomb

For Theorems 1.2, 1.3 and 1.4, our embedding strategy is based on the observation that, if
we can find a large collection of paths or cycles with a certain nice property, then we can
repeatedly replace the vertices (or edges) of the chosen paths or cycles with vertices (or
edges) from a new one in the collection to build the desired tilings. Formally, the definition
of an α-rich collection of paths in a graph is as follows.

Definition 2.1. Let α ą 0 and k P N. We say that a collection P of (labelled) paths Pk

is α-rich if for any member x1x2 ¨ ¨ ¨ xk P P and any 2 ď i ď k ´ 1, there exist at least α
distinct vertices x1i such that x1x2 ¨ ¨ ¨ xi´1x1ixi`1 ¨ ¨ ¨ xk P P .
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Figure 2: The process to build grids and honeycomb graphs.

Finding a t ˆ t grid then boils down to constructing an α-rich collection of paths of
length 2t´ 2 with sufficiently large α; see the left side of Figure 2 for an illustration. In
order to find the desired quadrangulations of the cylinder and the torus, we use an analogous
definition of rich cycles.

To deal with honeycomb graphs, we introduce the following definition.

Definition 2.2. Let α ą 0 and k P N. A collection P of paths Pk is α-good if the following
holds. For any x1x2 ¨ ¨ ¨ xk P P and 2 ď i ď k ´ 2, there are at least α pairwise disjoint
edges x1ix1i`1 such that x1x2 ¨ ¨ ¨ xi´1x1ix1i`1xi`2 ¨ ¨ ¨ xk P P .

Finding a honeycomb graph boils down to constructing an α-good collection of paths
for a sufficiently large α; see the right side of Figure 2 for an illustration.

While it is not too hard to find a collection of rich paths and even cycles via supersat-
uration, it is a lot more challenging to construct a collection of good paths. In order to
accomplish the latter, rather than doing a direct counting using supersaturation, we carry
out a weighted count.

2.2 Weighted count of homomorphisms for Theorem 1.1

In this subsection, we give a brief outline of the proof of Theorem 1.1. Let us call an
n-vertex graph H with average degree d clean if for any uv P EpHq, u has at least d{16
neighbours w in H such that dHpv, wq ě d2

128n
. It can be shown that any graph with average

degree at least 2d contains a clean subgraph with average degree at least d.
Let G be a graph of average degree d and let distinct vertices xi, yi for 0 ď i ď ` form a

copy of P ˝
``1 :“ K2 ˝P``1, where xiyi P EpGq for every i and xi´1xi, yi´1yi P EpGq for every

1 ď i ď `. Now the weight of this copy is defined to be 1{
ś`

i“1 maxpdGpxi´1, yiq,
d2

n
q. For

distinct vertices u, v, w, z, we call the 4-tuple pu, v, w, zq rich if uv, wz P EpGq, and moreover
there are at least 4` pairwise vertex-disjoint edges xy P EpGq such that ux, xw, vy, yz P
EpGq. We say that vertices xi, yi (for 0 ď i ď `) form a nice copy of P ˝

``1 if they form a
copy of P ˝

``1, for every 1 ď i ď ` the codegrees satisfy dpxi´1, yiq, dpxi, yi´1q ď C0d
1{2 (for

some suitably defined constant C0), and for every 2 ď i ď `, the 4-tuple pxi´2, yi´2, xi, yiq is
not rich. We also say that vertices xi, yi, x1i, y1i (for 0 ď i ď `) form a nice homomorphic copy
of C˝

2` if x0 “ x10, y0 “ y10, x` “ x1`, y` “ y1`, both txi, yi : 0 ď i ď `u and tx1i, y1i : 0 ď i ď `u
form a nice copy of P ˝

``1, each xi is distinct from all other vertices except possibly x1i and
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each yi is distinct from all other vertices except possibly y1i. We define the weight of a

homomorphic copy of C˝
2` to be

´

ś`
i“1 maxpdpxi´1, yiq,

d2

n
q ¨

ś`
i“1 maxpdpx1i´1, y

1
iq,

d2

n
q

¯´1

.

Let G be a clean, bipartite, n-vertex graph with average degree d ě Cn1{2 and maximum
degree at most Kd, where K is some absolute constant and C is a sufficiently large constant
(which can depend on `). Our proof consists of the following steps.

1. We first prove that the total weight of nice copies of P ˝
``1 in G is at least Ω`pnd

``1q.

2. Noting that by gluing together two nice copies of P ˝
``1, we get a nice homomorphic copy

of C˝
2`, one can easily deduce from step 1 that the total weight of nice homomorphic

copies of C˝
2` in G is Ω`pd

2`q.

3. By carefully analyzing different types of degenerate homomorphic copies of C˝
2`, we

can show that for ` ě 4, the total weight of degenerate nice homomorphic copies of
C˝

2` in G is at most Opnd2`´2q. This is negligible compared to Ω`pd
2`q, showing that

G contains a genuine copy of C˝
2`.

3 Open problem
An open problem left in this paper is determining the extremal number of C˝

6 . We conjecture
that expn,C˝

6q “ Θpn3{2q.
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