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Abstract

For a fixed poset P , a family F of subsets of [n] is induced P -saturated if F does
not contain an induced copy of P , but for every subset S of [n] such that S 6∈ F ,
then P is an induced subposet of F ∪ {S}. The size of the smallest such family F is
denoted by sat∗(n, P ). Keszegh, Lemons, Martin, Pálvölgyi and Patkós [Journal of
Combinatorial Theory Series A, 2021] proved that there is a dichotomy of behaviour
for this parameter: given any poset P , either sat∗(n, P ) = O(1) or sat∗(n, P ) ≥ log2 n.
We improve this general result showing that either sat∗(n, P ) = O(1) or sat∗(n, P ) ≥
2
√
n− 2. Our proof makes use of a Turán-type result for digraphs.
Curiously, it remains open as to whether our result is essentially best possible or

not. On the one hand, a conjecture of Ivan states that for the so-called diamond poset
♦ we have sat∗(n,♦) = Θ(

√
n); so if true this conjecture implies our result is tight up

to a multiplicative constant. On the other hand, a conjecture of Keszegh, Lemons,
Martin, Pálvölgyi and Patkós states that given any poset P , either sat∗(n, P ) = O(1)
or sat∗(n, P ) ≥ n + 1. We prove that this latter conjecture is true for a certain class
of posets P .
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1 Introduction
Saturation problems have been well studied in graph theory. A graph G is H-saturated if
it does not contain a copy of the graph H, but adding any edge to G from its complement
creates a copy of H. Turán’s celebrated theorem [15] can be stated in the language of
saturation: it determines the maximum number of edges in a Kr-saturated n-vertex graph.
In contrast, Erdős, Hajnal and Moon [5] determined the minimum number of edges in a
Kr-saturated n-vertex graph; see the survey [3] for further results in this direction.

In recent years there has been an emphasis on developing the theory of saturation
for posets. Turán-type problems have been extensively studied in this setting (see, e.g.,
the survey [9]). In this paper we are interested in minimum saturation questions à la
Erdős–Hajnal–Moon. In particular, we consider induced saturation problems.

All posets we consider will be (implicitly) viewed as finite collections of finite subsets of
N. In particular, we say that P is a poset on [p] := {1, 2, . . . , p} if P consists of subsets of
[p]. Let P,Q be posets. A poset homomorphism from P to Q is a function φ : P → Q such
that for every A,B ∈ P , if A ⊆ B then φ(A) ⊆ φ(B). We say that P is a subposet of Q if
there is an injective poset homomorphism from P to Q; otherwise, Q is said to be P -free.
Further we say P is an induced subposet of Q if there is an injective poset homomorphism
φ from P to Q such that for every A,B ∈ P , φ(A) ⊆ φ(B) if and only if A ⊆ B; otherwise,
Q is said to be induced P -free.

For a fixed poset P , we say that a family F ⊆ 2[n] of subsets of [n] is P -saturated if F
is P -free, but for every subset S of [n] such that S 6∈ F , then P is a subposet of F ∪ {S}.
A family F ⊆ 2[n] of subsets of [n] is induced P -saturated if F is induced P -free, but for
every subset S of [n] such that S 6∈ F , then P is an induced subposet of F ∪ {S}.

The study of minimum saturated posets was initiated by Gerbner, Keszegh, Lemons,
Palmer, Pálvölgyi and Patkós [8] in 2013. In their work the relevant parameter is sat(n, P ),
which is defined to be the size of the smallest P -saturated family of subsets of [n]. See,
e.g., [8, 12, 14] for various results on sat(n, P ).

The induced analogue of sat(n, P ) – denoted by sat∗(n, P ) – was first considered by
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [6]. Thus, sat∗(n, P ) is defined
to be the size of the smallest induced P -saturated family of subsets of [n]. The following
result from [12] (and implicit in [6]) shows that the parameter sat∗(n, P ) has a dichotomy
of behaviour.

Theorem 1.1. [6, 12] For any poset P , either there exists a constant KP with sat∗(n, P ) ≤
KP or sat∗(n, P ) ≥ log2 n, for all n ∈ N.

Probably the most important open problem in the area is to obtain a tight version of
Theorem 1.1; that is, to replace the log2 n in Theorem 1.1 with a term that is as large as
possible. In fact, Keszegh, Lemons, Martin, Pálvölgyi and Patkós [12] made the following
conjecture in this direction.

Conjecture 1.2. [12] For any poset P , either there exists a constant KP with sat∗(n, P ) ≤
KP or sat∗(n, P ) ≥ n+ 1, for all n ∈ N.
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Note that the lower bound of n + 1 is rather natural here. For example, it is the
size of the largest chain in 2[n] as well as the smallest possible size of the union of two
consecutive ‘layers’ in 2[n], namely the layer containing [n] and the layer containing all
subsets of [n] of size exactly n − 1. Furthermore, such structures form minimum induced
saturated families for the so-called fork poset ∨, i.e., sat∗(n,∨) = n + 1 [6]; so the lower
bound in Conjecture 1.2 cannot be increased. There are also no known examples of posets
P for which sat∗(n, P ) = ω(n).

In contrast, Ivan [11, Section 3] presented evidence that led her to conjecture a rather
different picture for the diamond poset ♦ (see Figure 1 for the Hasse diagram of ♦).

Conjecture 1.3. [11] sat∗(n,♦) = Θ(
√
n).

Our main result is the following improvement of Theorem 1.1.

Theorem 1.4. For any poset P , either there exists a constant KP with sat∗(n, P ) ≤ KP

or sat∗(n,P) ≥ 2
√
n− 2, for all n ∈ N.

Thus, if Conjecture 1.3 is true, the lower bound in Theorem 1.4 would be tight up to
a multiplicative constant.

Figure 1: Hasse diagrams for the posets N , Y , ♦ and X.

On the other hand, we prove that Conjecture 1.2 does hold for a class of posets (that
does not include ♦). Given p ∈ N and a poset P on [p] we define the dual P of P as P :=
{[p]\F : F ∈ P}. We say a poset P has legs if there are distinct elements L1, L2, H ∈ P such
that L1, L2 are incomparable, L1, L2 ⊆ H and for any other element A ∈ P \ {L1, L2, H}
we have A ⊇ H. The elements L1 and L2 are called legs and H is called a hip.

Theorem 1.5. Let P be a poset with legs and n ≥ 3. Then sat∗(n, P ) ≥ n+ 1. Moreover,
if both P and P have legs, then sat∗(n, P ) ≥ 2n+ 2.

Our results still leave both Conjecture 1.2 and Conjecture 1.3 open, and it is unclear
to us which of these conjectures is true. However, if Conjecture 1.3 is true we believe it
highly likely that there will be other posets P for which sat∗(n, P ) = Θ(

√
n).

It is also natural to seek exact results on sat∗(n, P ). However, despite there already
being several papers concerning sat∗(n, P ) [1, 4, 6, 10, 11, 12, 13], there are relatively few
posets P for which sat∗(n, P ) is known precisely (see Table 1 in [12] for a summary of most
of the known results). Our next result extends this limited pool of posets, determining
sat∗(n,X) and sat∗(n, Y ) (see Figure 1 for the Hasse diagrams of X and Y ).
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Theorem 1.6. Given any n ∈ N with n ≥ 3,

(i ) sat∗(n, Y ) = n+ 2 and

(ii ) sat∗(n,X) = 2n+ 2.

Note that Theorem 1.6(ii ) easily follows via Theorem 1.5 and an extremal construction.
An application of Theorem 1.5 to Y only yields that sat∗(n, Y ) ≥ n + 1, so we require an
extra idea to obtain Theorem 1.6(i ).

It is natural to consider induced saturation problems for families of posets. Given a
family of posets P , we say that F ⊆ 2[n] is induced P-saturated if F contains no induced
copy of any poset P ∈ P and for every S ∈ 2[n] \ F there exists an induced copy of some
poset P ∈ P in F ∪ {S}. We denote the size of the smallest such family by sat∗(n,P). By
following the proof of Theorem 1.4 precisely, one obtains the following result.

Theorem 1.7. For any family of posets P, either there exists a constant KP with sat∗(n,P) ≤
KP or sat∗(n,P) ≥ 2

√
n− 2, for all n ∈ N.

In light of Theorem 1.7 it is natural to ask whether an analogue of Conjecture 1.2 is
true in this more general setting, or whether (for example) the lower bound on sat∗(n,P)
in Theorem 1.7 is best possible up to a multiplicative constant.

The proofs of Theorems 1.4–1.7 appear in [7]. In the next section we describe how we
make use of a Turán-type result for digraphs in the proof of Theorem 1.4.

2 A connection to a Turán problem for digraphs
In [13] a trick was introduced which can be used to prove lower bounds on sat∗(n, P ) for
some posets P . The idea is to construct a certain auxiliary digraph D whose vertex set
consists of the elements in an induced P -saturated family F ; one then argues that how this
digraph is defined forces D to contain many edges, which in turn forces a bound on the
size of the vertex set of D (i.e., lower bounds |F|). This trick has been used to prove that
sat∗(n,♦) ≥

√
n [13, Theorem 6] and sat∗(n,N) ≥

√
n [10, Proposition 4] (see Figure 1 for

the Hasse diagram of N).
Our proof of Theorem 1.4 utilises a variant of this digraph trick. In particular, by

introducing an appropriate modification to the auxiliary digraph D used in [13], we are
able to deduce certain Turán-type properties ofD. Turán problems in digraphs are classical
in extremal combinatorics and their study can be traced back to the work of Brown and
Harary [2]. In [7] we prove a Turán-type result concerning transitive cycles, stated as
Theorem 2.1 below.

Given k ≥ 3, the transitive cycle on k vertices
−⇀
TCk is a digraph with vertex set [k] and

every directed edge from i to i+ 1 for every i ∈ [k− 1], as well as the directed edge from 1
to k. We establish an upper bound on the number of edges of a digraph not containing
any transitive cycle.
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Theorem 2.1. Let n ∈ N and let D be a digraph on n vertices. If D is
−⇀
TCk-free for

all k≥3, then

e(D) ≤
⌊
n2

4

⌋
+ 2.

Note that the bound in Theorem 2.1 is best possible up to an additive constant. Indeed,
consider the n-vertex digraph D with vertex classes A,B of size bn/2c and dn/2e respec-
tively and all possible directed edges from A to B. So D has bn2/4c edges and contains no
transitive cycle.

Data availability statement. A full paper containing the proofs of our results can be
found on arXiv [7].
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