UPPER BOUNDS ON RAMSEY NUMBERS FOR VECTOR SPACES OVER FINITE FIELDS

(EXTENDED ABSTRACT)

Bryce Frederickson * Liana Yepremyan [†]

Abstract

For $B \subseteq \mathbb{F}_q^m$, let $\exp(n, B)$ denote the maximum cardinality of a set $A \subseteq \mathbb{F}_q^n$ with no subset which is affinely isomorphic to B. Furstenberg and Katznelson proved that for any $B \subseteq \mathbb{F}_q^m$, $\exp(n, B) = o(q^n)$ as $n \to \infty$. For certain q and B, some more precise bounds are known. We connect some of these problems to certain Ramsey-type problems, and obtain some new bounds for the latter. For $s, t \ge 1$, let $R_q(s, t)$ denote the minimum n such that in every red-blue coloring of one-dimensional subspaces of \mathbb{F}_q^n , there is either a red s-dimensional subspace of \mathbb{F}_q^n or a blue t-dimensional subspace of \mathbb{F}_q^n . The existence of these numbers is implied by the celebrated theorem of Graham, Leeb, Rothschild. We improve the best known upper bounds on $R_2(2, t)$, $R_3(2, t)$, $R_2(t, t)$, and $R_3(t, t)$.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-062

1 Main Results

We consider bounds for Ramsey-type and Turán-type problems in the setting of vectorspaces over finite fields. In this paper, we use $\begin{bmatrix} V \\ t \end{bmatrix}$ to denote the collection of all *t*-dimensional linear subspaces of a vector space V. The following theorem is a special case of a classical theorem of Graham, Leeb, and Rothschild [12], which proves the existence of the Ramsey numbers we consider.

^{*}Department of Mathematics, Emory University, Atlanta, Georgia 30322. Email: bfrede4@emory.edu.

[†]Department of Mathematics, Emory University, Atlanta, Georgia 30322. Email: lyeprem@emory.edu.

Theorem 1 (Graham, Leeb, Rothschild). Let \mathbb{F}_q be any finite field. For any positive integers t_1, \ldots, t_k , there exists a minimum $n =: R_q(t_1, \ldots, t_k)$ such that for every k-coloring $f: \begin{bmatrix} \mathbb{F}_q^n \\ 1 \end{bmatrix} \to [k]$ of the 1-dimensional linear subspaces of \mathbb{F}_q^n , there exist $i \in [k]$ and a linear subspace $U \subseteq \mathbb{F}_q^n$ of dimension t_i , such that $\begin{bmatrix} U \\ 1 \end{bmatrix}$ is monochromatic in color i.

In the case $t_1 = \cdots = t_k = t$, we write $R_q(t_1, \ldots, t_k) = R_q(t; k)$. The bounds for $R_q(t_1, \ldots, t_k)$ implied by early proofs of Theorem 1 (see [12], [18]) are quite large due to repeated use of the Hales-Jewett Theorem [13]. In the case q = 2, the problem can be reduced to the disjoint unions problem for finite sets, considered by Taylor [19], which gives the following bound.

Theorem 2 (Taylor). The number $R_2(t;k)$ is at most a tower of height 2k(t-1) of the form

$$R_2(t;k) \le k^{3^{k^*}}$$

For comparison, lower bounds attained from applying the techniques from [1] such as the Lovász Local Lemma to a uniform random coloring are only on the order of

$$R_2(t;k) = \Omega\left(\frac{2^t}{t}\log_2 k\right)$$

We improve the bound of Theorem 2 by removing the 3's from the tower.

Theorem 3. For any $t, k, R_2(t; k)$ is at most a tower of height k(t-1) of the form

$$R_2(t;k) \le k^{k^{\dots^n}}$$

More recently, Nelson and Nomoto considered the off-diagonal version of this problem over \mathbb{F}_2 with two colors, and they proved the following bound.

Theorem 4 (Nelson, Nomoto). For every $t \ge 2$,

$$R_2(2,t) \le (t+1)2^t.$$

Similar probabilistic arguments to those mentioned after Theorem 2 only give lower bounds linear in t for $R_2(2,t)$. Nelson and Nomoto asked if a subexponential upper bound is possible. While the answer to that question remains to be seen, we provide the following exponential improvement.

Theorem 5. There exists a constant C such that for all $t \ge 2$,

$$R_2(2,t) \le Ct6^{t/4}.$$

We obtain the following analogous results over \mathbb{F}_3 , using the same methodology.

Theorem 6. There exists an absolute polynomial p(x) such that for any $t, k, R_3(t;k)$ is at most a tower of height k(t-1) of the form

$$R_3(t;k) \le p(k)^{p(k)} \cdot e^{\frac{p(k)}{2}}$$

Theorem 7. There exist constants C and A, with $A \approx 13.901$ such that for all $t \geq 2$,

$$R_3(2,t) \leq CtA^t$$

2 Background and Methodology

Before we discuss the proofs of these results, we give a brief introduction to affine extremal numbers, which are our principal tool. We say that a subset $A \subseteq \mathbb{F}_q^n$ contains an *affine copy* of $B \subseteq \mathbb{F}_q^m$ if there is an injective affine map $f : \mathbb{F}_q^m \to \mathbb{F}_q^n$ with $f(B) \subseteq A$. If $\mathcal{B} = \{B_i\}_{i \in I}$ is a family of subsets $B_i \subseteq \mathbb{F}_q^{m_i}$, we say that A is \mathcal{B} -free if A has no affine copy of any B_i . The largest size $\exp(n, \mathcal{B})$ of a \mathcal{B} -free subset of \mathbb{F}_q^n is called the *n*th *affine extremal number* of \mathcal{B} . If $\mathcal{B} = \{B\}$, we write $\exp(n, \{B\}) = \exp(n, B)$. Determining these affine extremal numbers dates back at least to the following theorem of Furstenberg and Katznelson [8].

Theorem 8 (Furstenberg, Katznelson). Let \mathbb{F}_q be any finite field. For any positive integer t,

$$\operatorname{ex}_{\operatorname{aff}}(n, \mathbb{F}_q^t) = o(q^n).$$

Since any \mathcal{B} -free set is \mathbb{F}_q^t -free for some t, Theorem 8 says that affine extremal numbers are always $o(q^n)$. Furstenberg and Katznelson went on to prove a density version of the Hales-Jewett Theorem [9], from which Theorem 8 is immediate. Alternative proofs of these results can be found in [16] and [15], respectively.

The projective version of this problem is even older, beginning with the following result of Bose and Burton [3].

Theorem 9 (Bose, Burton). Let \mathbb{F}_q be a finite field, and let $t \geq 1$. Let A be a subset of $\begin{bmatrix} \mathbb{F}_q^n \\ 1 \end{bmatrix}$ for which there is no linear t-dimensional subspace $U \subseteq \mathbb{F}_q^n$ with $\begin{bmatrix} U \\ 1 \end{bmatrix} \subseteq A$. Then

$$|A| \le \frac{q^n - q^{n-t+1}}{q-1},$$

with equality if and only if $\begin{bmatrix} \mathbb{F}_q^n \\ 1 \end{bmatrix} \setminus A = \begin{bmatrix} W \\ 1 \end{bmatrix}$ for some linear (n-t+1)-dimensional linear subspace $W \subseteq \mathbb{F}_q^n$.

The problem of determining projective extremal numbers asymptotically for general projective configurations over \mathbb{F}_q was solved by Geelen and Nelson [10], who proved a theorem analogous to the Erdős-Stone-Simonivits Theorem for graphs.

Returning to the affine context, it is unknown in general (see [11], Open Problem 32) whether the $o(q^n)$ term in Theorem 8 can be taken to be of the form $(q^{1-\varepsilon})^n$ for some $\varepsilon = \varepsilon(q, t) > 0$. However, for q = 2 and q = 3, we have the following respective results of Bonin and Qin [2], and of Fox and Pham [7].

Theorem 10 (Bonin, Qin). There exists an absolute constant c such that for every $t \ge 1$, every subset of \mathbb{F}_2^n of size at least $(2^{1-c2^{-t}})^n$ contains an affine t-space.

Later on, we will use a more precise bound implied by their argument, namely

$$\exp(n, \mathbb{F}_2^t) < 2^{(1-2^{1-t})n+1}.$$

Theorem 11 (Fox, Pham). There exist absolute constants c and C_0 , with $C_0 \approx 13.901$ such that for every $t \geq 1$, every subset of \mathbb{F}_3^n of size at least $\left(3^{1-cC_0^{-t}}\right)^n$ contains an affine t-space.

The proof of Theorem 10 is entirely self-contained and is no more than a page. Theorem 11, on the other hand, is the culmination of several breakthroughs related to the Cap Set Problem, starting with the advances in polynomial methods from Croot, Lev, and Pach [4] and the subsequent proof of the Cap Set Theorem by Ellenberg and Gijswijt [5], which says that $\exp((n, \mathbb{F}_3^1) \leq (3^{1-\varepsilon})^n$ for some $\varepsilon > 0$. Fox and Lovász [6] then proved a supersaturation version of this result, from which Fox and Pham derived Theorem 11, which is a multidimensional extension of the Cap Set Theorem. It is unknown whether the constant C_0 given in the theorem is tight, as probabilistic lower bounds for $\exp((n, \mathbb{F}_3^t))$ are on the order of $(3^{1-3^{-(1+o(1))t}})^n$ [7].

3 Proof Outlines

We now show that Theorems 3, 6, and 7 are easy consequences of the affine extremal results Theorem 10 and Theorem 11. To prove Theorem 5, we prove an additional extremal result over \mathbb{F}_2 by way of supersaturation and some observations about sumsets and products of affine structures.

To begin, we show how Theorem 3 follows from Bonin and Qin's result, Theorem 10.

Proof of Theorem 3. Since $R_2(1, \ldots, 1) = 1$, and we can reasonably define $R_2(t_1, \ldots, t_k) = 0$ if some $t_i = 0$, it suffices to show that

$$R_2(t_1, t_2, \ldots, t_k) \le (\log_2 k) 2^r,$$

where $r = \max_{i \leq k} R_2(t_1, \ldots, t_i - 1, \ldots, t_k)$. In this case, we get by induction that

$$R_2(t_1,...,t_k) \le (\log_2 k) k^{k^{(k^2)}} \le k^{k^{(k^2)}},$$

where the height of the tower is $\sum_{i \leq k} (t_i - 1)$. Let $n = (\log_2 k)2^r$, and consider a k-coloring of $\begin{bmatrix} \mathbb{F}_2^n \\ 1 \end{bmatrix}$, which we view as a k-coloring of $\mathbb{F}_2^n \setminus \{0\}$. Without loss of generality, assume that at least $2^n/k = 2^{n-\log_2 k}$ points are given color 1. By our choice of n and Theorem 10, we have

$$\exp_{\text{aff}}(n, \mathbb{F}_2^r) < 2^{(1-2^{1-r})n+1} = 2^{n-2\log_2 k+1} \le 2^{n-\log_2 k},$$

so there is an affine r-dimensional subspace A which is monochromatic in color 1. Note that $0 \notin A$ since 0 was not given a color. Let W be the translate of A containing 0, which is a linear r-space. Suppose that there is no linear t_i -space U_i with $U_i \setminus \{0\}$ monochromatic in color i for any $i \ge 2$. Then by our choice of r, there exists a linear $(t_1 - 1)$ -space $U'_1 \subseteq W$ with $U'_1 \setminus \{0\}$ monochromatic in color 1. Let $u \in A$, and take $U_1 = \operatorname{span}\{U'_1, u\}$, which is a linear t_1 -space contained in $U'_1 \cup A$, with $U_1 \setminus \{0\}$ monochromatic in color 1.

Upper bounds on Ramsey numbers for vector spaces over finite fields

The proof of Theorem 6 is essentially the same, except that we use Theorem 11 in place of Theorem 10.

We now reformulate the off-diagonal Ramsey problem as an affine extremal problem. For a subset $A \subseteq \mathbb{F}_2^n$, let $\omega(A)$ be the maximum t such that $A \cup \{0\}$ contains a linear t-space. Define the sumset of A to be the set $A + A := \{x + y : x, y \in A\}$, and let $\mathcal{B}_t = \{B \subseteq \mathbb{F}_2^m : m \ge 1, \omega(B + B) \ge t\}$ for $t \ge 1$. Define m(t) to be the minimum n such that $\exp(\mathcal{B}_t) < 2^{n-t+1}$. The following observation is implicit in the work of Nelson and Nomoto [14] on the structural characterization of claw-free binary matroids.

Lemma 12 (Nelson, Nomoto). For any $t \ge 2$, $R_2(2,t) \le m(t)$.

Nelson and Nomoto used the following result of Sanders [17] to prove Theorem 4.

Theorem 13 (Sanders). Let A be a subset of \mathbb{F}_2^n of density $\alpha < 1/2$. Then

$$\omega(A+A) \ge n - \left\lceil n/\log_2 \frac{2-2\alpha}{1-2\alpha} \right\rceil.$$

The proof of Theorem 4 from [14] is simply an application of Theorem 13 with $\alpha = 2^{1-t}$ and $n = (t+1)2^t$, noting that $n - \left\lceil n/\log_2 \frac{2-2\alpha}{1-2\alpha} \right\rceil \ge \alpha n/2 - 1 = t$ for this choice of parameters, so $m(t) \le n$. By Lemma 12, $R_2(2,t) \le n$ as well.

We observe that the same bound can be obtained by simply applying Theorem 10 instead of Sanders' result, noting that any set A which properly contains an affine (t-1)-space has $\omega(A+A) \ge t$, and hence

$$\operatorname{ex}_{\operatorname{aff}}(n, \mathcal{B}_t) \le \operatorname{ex}_{\operatorname{aff}}(n, \mathbb{F}_2^{t-1}) < 2^{(1-2^{2-t})n+1}.$$

This implies by Lemma 12 that $R_2(2,t) \le m(t) \le t2^{t-2}$.

The same argument, together with Theorem 11, gives Theorem 7 for $\mathbb{R}_3(2,t)$. In place of the sumset A + A, we consider a set of the form

 $A_{\rightarrow} := \{ d \in \mathbb{F}_3^n : \text{there exists } x \text{ such that } x + \lambda d \in A \text{ for all } \lambda \in \mathbb{F}_3 \}.$

To improve on this initial bound for m(t), we consider additional affine structures beyond \mathbb{F}_2^{t-1} that belong to the family \mathcal{B}_t . By taking products of smaller structures which have a certain supersaturation property, we construct a sequence $(B_t)_{t\geq 4}$ with $B_t \in \mathcal{B}_t$ and $\exp_{\text{aff}}(n, B_t) < (2^{1-c6^{-t/4}})^n$ for some absolute constant c. This implies Theorem 5, as we have

$$R_2(2,t) \le m(t) \le \frac{1}{c}(t-1)6^{t/4}.$$

We leave out most of the details of our argument for the sake of brevity, but we outline our methods. We construct $B_t \in \mathcal{B}_t$ as follows. For $k \geq 2$, define $C_{2k} = \{e_1, \ldots, e_{2k-1}, \sum_{i=1}^{2k-1} e_i\} \subseteq \mathbb{F}_2^{2k-1}$, where e_i is the *i*th standard basis vector. We observe that $\omega(C_6 + C_6) = 4$. We further observe that for any $A \subseteq \mathbb{F}_2^n$ and $B \subseteq \mathbb{F}_2^m$, the Cartesian product $\{(x, y) \in \mathbb{F}_2^{n+m} : x \in A, y \in B\}$ satisfies

$$\omega((A \times B) + (A \times B)) = \omega(A + A) + \omega(B + B).$$

Thus taking B_t to be $C_6^{\lceil t/4 \rceil}$ gives $B_t \in \mathcal{B}_t$. We also obtain $\exp(n, B_t) < (2^{1-c6^{-t/4}})^n$, as desired, via an iterative process that makes use of supersaturation of C_6 , in the spirit of [7].

We believe our bounds on $\exp(n, \mathcal{B}_t)$, and hence on $m(t) \ge R_2(2, t)$, to be far from the truth. It remains an open problem to improve these bounds.

References

- [1] N. Alon and J. H Spencer, The probabilistic method, John Wiley & Sons, 2016. $\uparrow 451$
- [2] J. E Bonin and H. Qin, Size functions of subgeometry-closed classes of representable combinatorial geometries, Discrete Mathematics 224 (2000), no. 1-3, 37–60. ↑452
- [3] R. C. Bose and R. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, Journal of Combinatorial Theory 1 (1966), no. 1, 96–104.
 ↑452
- [4] E. Croot, V. F Lev, and P. P. Pach, Progression-free sets in are exponentially small, Annals of Mathematics (2017), 331–337. [↑]453
- J. S Ellenberg and D. Gijswijt, On large subsets of with no three-term arithmetic progression, Annals of Mathematics (2017), 339–343. [↑]453
- [6] J. Fox and L. Lovász, A tight bound for Green's arithmetic triangle removal lemma in vector spaces, Proceedings of the twenty-eighth annual acm-siam symposium on discrete algorithms, 2017, pp. 1612– 1617. ↑453
- [7] J. Fox and H. T. Pham, Popular progression differences in vector spaces II (2017). ↑452, 453, 455
- [8] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, Journal d'Analyse Mathématique 45 (1985), no. 1, 117–168. [↑]452
- [9] _____, A density version of the Hales-Jewett theorem, Journal d'Analyse Mathématique 57 (1991), no. 1, 64–119. ↑452
- [10] J. Geelen and P. Nelson, An analogue of the Erdős-Stone theorem for finite geometries, Combinatorica 35 (2015), 209–214. [↑]452
- [11] D. Gijswijt, Excluding affine configurations over a finite field, arXiv preprint arXiv:2112.12620 (2021).
 ⁴⁵²
- [12] R. L. Graham, K. Leeb, and B. L. Rothschild, Ramsey's theorem for a class of categories, Advances in Math. 8 (1972), 417–433. MR306010 ↑450, 451
- [13] A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229. MR143712 ↑451
- [14] P. Nelson and K. Nomoto, The structure of claw-free binary matroids, Journal of Combinatorial Theory, Series B 150 (2021), 76–118. ↑454
- [15] D. Polymath, A new proof of the density Hales-Jewett theorem, Annals of Mathematics (2012), 1283– 1327. ↑452
- [16] V Rödl, E Tengan, M Schacht, and N Tokushige, Density theorems and extremal hypergraph problems, Israel Journal of Mathematics 152 (2006), no. 1, 371–380. [↑]452
- [17] T. Sanders, Green's sumset problem at density one half, Acta Arithmetica 146 (2011), no. 1, 91–101 (eng). ↑454

- [18] J. H. Spencer, Ramsey's theorem for spaces, Trans. Amer. Math. Soc. 249 (1979), no. 2, 363–371. MR525678 ↑451
- [19] A. D Taylor, Bounds for the disjoint unions theorem, Journal of Combinatorial Theory, Series A 30 (1981), no. 3, 339–344. ↑451