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Abstract
Consider the random geometric graph G(n, r) obtained by independently assigning

a uniformly random position in [0, 1]2 to each of the n vertices of the graph and
connecting two vertices by an edge whenever their Euclidean distance is at most r.
We study the event that G(n, r) contains a spanning copy of a balanced tree T and
obtain sharp thresholds for these events. Our methods provide a polynomial-time
algorithm for finding a copy of such trees T above the threshold.
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1 Introduction
The random geometric graph G(n, r) is a classic model of random graphs defined as follows.
Let n be a positive integer, and let r be a positive real number. The vertices of the graph
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are n points sampled uniformly at random and independently from [0, 1]2, and two vertices
are connected by an edge if their Euclidean distance is at most r. Since their introduction
by Gilbert [7] as a model for telecommunication networks, random geometric graphs have
received a lot of attention from both applied and theoretical points of view [1, 6, 11, 13, 14].

1.1 Thresholds in random geometric graphs

Random geometric graphs are known to exhibit threshold behavior for many graph properties,
meaning that there are some special values of the parameters of the model around which a
drastic change in the behavior of the graph with respect to these properties takes place.
Formally, a function r∗ = r∗(n) is a threshold for some monotone increasing property P in
G(n, r) if

lim
n→∞

P[G(n, r) ∈ P ] =

{
0 if r = o(r∗),

1 if r = ω(r∗).

Moreover, we say that a function r∗ = r∗(n) is a sharp threshold for P if, for every ε ∈ (0, 1),

lim
n→∞

P[G(n, r) ∈ P ] =

{
0 if r ≤ (1− ε)r∗,
1 if r ≥ (1 + ε)r∗.

Goel, Rai and Krishnamachari [8] gave a general upper bound for the threshold width
in G(n, r), and Bradonjić and Perkins [2] characterized vertex-monotone properties which
exhibit a sharp threshold. While the results in [2, 8] serve to prove the existence of (sharp)
thresholds, they give no indication of where these thresholds actually are. Determining the
(sharp) thresholds for different properties of interest is one of the main problems in the
area, and it has received much attention. In this extended abstract, our aim is to determine
the (sharp) threshold for the appearance of different spanning trees.

There are some results about thresholds which are closely related to our problem. The
sharp threshold for connectivity was determined independently by Gupta and Kumar [9]
and Penrose [12], who proved that it is

√
log n/πn. Díaz, Mitsche and Pérez-Giménez [4]

obtained the sharp threshold for G(n, r) to contain a Hamilton cycle, which coincides with
the sharp threshold for connectivity. In particular, this gives the sharp threshold for the
containment of a spanning path.

The question of trying to find the (sharp) threshold for the appearance of different
families of spanning trees pops up naturally. The results about the sharp threshold for
Hamiltonicity can be used to deduce thresholds for path-like trees. Indeed, using the
triangle inequality, for any fixed k ≥ 2, one may show that the threshold for Hamiltonicity
is also a threshold for the property that G(n, r) contains the k-th power of a Hamilton
cycle. It immediately follows that every spanning tree which can be embedded into the
k-th power of a Hamilton cycle has this same threshold. This is the case, for instance, of
spanning caterpillars with constant maximum degree.

One may naturally wonder whether all spanning trees with bounded maximum degree
have the same threshold. Incidentally, in the model of binomial random graphs G(n, p) where
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each of the
(
n
2

)
possible edges appears independently with probability p, Montgomery [10]

proved that this is the case: the threshold for all bounded degree spanning trees is log n/n.
However, this turns out to be very far from the truth in random geometric graphs. Indeed,
there are bounded degree trees T whose diameter is logarithmic in the number of vertices,
and this diameter directly imposes a much higher lower bound on the threshold r∗ for
the property of containing a copy of T : since a spanning subgraph of G(n, r) cannot have
smaller diameter than G(n, r) itself, the threshold for trees with diameter O(log n) must
satisfy r∗ = Ω(1/ log n), which is far larger than the connectivity threshold mentioned above.
The results of Goel, Rai and Krishnamachari [8] imply that, for any such tree, there is a
sharp threshold. Our goal is to determine the value of this threshold.

Out of all trees with logarithmic diameter, binary trees are especially interesting due to
their many applications as data structures (see, e.g., [3]). Identifying the sharp threshold
for embedding these trees into G(n, r) is thus an important particular case of our study.

1.2 Main results

An s-ary tree is a rooted tree where every node has at most s children. We say that an
s-ary tree is balanced if there is an integer h such that all vertices at (graph) distance at
most h− 1 from the root have exactly s children, and all vertices at distance h from the
root are leaves. Our first result determines the sharp threshold for G(n, r) to contain a
spanning copy of the balanced s-ary tree for any fixed integer s ≥ 2.

Theorem 1. Fix an integer s ≥ 2. Let h be a positive integer, and set n :=
∑h

i=0 s
i. Let

Th be the balanced s-ary tree of height h (and on n vertices). Then, r∗ := 1/
√

2h is the
sharp threshold for G(n, r) to contain a copy of Th.

In fact, Theorem 1 is a particular case of a similar result for a larger class of trees. We
may think of the vertices of the rooted tree T as being partitioned into layers V0, V1, . . .,
where Vi contains all vertices at (graph) distance i from the root. For any vertex v ∈ V (T ),
if v ∈ Vi, we refer to its neighbors in Vi+1 as its children, and to all vertices which can be
reached by a path from v without going through Vi−1 as its descendants. The height of
the rooted tree is the maximum (graph) distance between the root and another vertex of
T . Given positive integers h and (si)

h
i=1, we say that a tree T is the balanced tree over the

sequence (si)
h
i=1 if it has height h and, for each i ∈ {1, . . . , h}, every vertex of T in Vi−1

has exactly si children. In particular, such a tree T contains exactly
∑h

i=0

∏i
j=1 sj vertices

(where, by convention, the empty product equals 1). If 2 ≤ si ≤ M for all i ∈ {1, . . . , h}
and for some positive integer M , we say that T is a balanced M-tree.

For a graph G, we denote by |G| the size of the vertex set of G. As typical in random
graphs literature, we focus on asymptotic statements. Our asymptotic notations will be
taken with respect to the height of the trees, which then also yields asymptotic results with
respect to n. Our next result extends Theorem 1 to all balanced M -trees as long as M is
not too large compared to h.
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Theorem 2. Let 2 ≤M = M(h) = o(h/ log h). Let (Th)h≥1 be a sequence of trees where
Th is a balanced M -tree of height h. Then, r∗ := 1/

√
2h is the sharp threshold for G(|Th|, r)

to contain a copy of Th.

We first provide here the (much easier) proof of the lower bound of 1/
√

2h in Theorem 2.
Note that a.a.s. (that is, with probability tending to 1 as h → ∞) there are vertices
u, v ∈ V (G(|Th|, r)) at Euclidean distance (1− o(1))

√
2 from each other. Indeed, a.a.s. the

squares c0, c1 ⊆ [0, 1]2 of side length 1/h containing the corners (0, 0) and (1, 1), respectively,
each contain at least a vertex. Conditioning on this event, assume that G admits Th as
a spanning tree. Since Th has diameter 2h, u and v must be at distance at most 2h in G.
Thus, by the triangle inequality, the Euclidean distance between them must be at most
2hr, so we must have 2hr ≥ dist(c0, c1) = (1− o(1))

√
2.

The proof of the upper bound is much more involved. In order to simplify our exposition,
in the next section we provide a sketch of the proof only for the case of balanced binary
trees. This particular case already contains most ideas of the more general theorem. For all
the details of the proof, we refer the reader to the full version of our paper [5].

2 Embedding algorithm for the upper bound
Fix ε ∈ (0, 1). Let T be a balanced binary tree of height h, and set n := 2h+1 − 1. Let
G = G(n, r). Suppose that r ≥ (1 + ε)r∗. We embed the layers V0, V1, . . . , Vh of T into G
one at a time, starting from the root. Throughout, we refer to the embedding of one of the
layers of T as a step of the algorithm (for simplicity, we assume that V0 is embedded at the
0-th step). For each i ∈ {0, . . . , h}, at the end of the i-th step, we call a vertex of G into
which a vertex on layer Vi has been embedded active. Moreover, we refer to the vertices of
G into which no vertex of T has been embedded as unseen. For simplicity of notation, once
a vertex of T has been embedded into G, we often interchangeably use the same notation
to refer to either of the two vertices.

Let k be the smallest integer which satisfies that

21/2−k <
εr∗

8
. (1)

Let S be the tessellation of [0, 1]2 into 22k congruent closed axis-parallel squares. We first
focus on embedding the layers V0, . . . , Vm+2 into G, where m will be defined below, in such
a way that the vertices in Vm+2 are distributed “sufficiently uniformly” in [0, 1]2. To be more
precise, we ensure that each square of S contains 2m+2−2k vertices from Vm+2. We then
finish the embedding of the remaining layers with a suitable application of Hall’s theorem.

For each ` ∈ {0, . . . , k}, let S` be the tessellation of [0, 1]2 into 22` congruent closed
axis-parallel squares obtained by combining the squares of S into groups of size 22(k−`). In
particular, S0 = {[0, 1]2} and Sk = S. For a square q ⊆ [0, 1]2, we denote its center by c(q).
Moreover, for every i, j ∈ {0, . . . , k} with i < j and any square q ∈ Si, let σj(q) denote
the set of four subsquares of q in Sj that form the axis-parallel square of side length 21−j



Sharp threshold for embedding balanced spanning trees in random geometric graphs 437

and center c(q). In particular, σi+1(q) is a tessellation of q into four subsquares in Si+1,
and for each j ∈ {i+ 2, . . . , k}, the set σj(q) is obtained from σj−1(q) by homothety with
center c(q) and ratio 1/2. Note that we sometimes abuse notation and identify σj(q) with
its geometric realization; in particular, we identify

⋃
p∈σj(q) p with σj(q) itself.

To begin with, we embed the layers V0 and V1 of T into an arbitrary square q0 ∈ σk([0, 1]2),
and then the four vertices in V2 are evenly distributed among the four squares in σk([0, 1]2).
Our algorithm for embedding V3, . . . , Vh has two main parts, which we call subroutines.
The first subroutine is used to embed layers V3, . . . , Vm+2, while the second subroutine deals
with the remaining layers.

2.1 The first subroutine

The m steps of this subroutine are grouped into k − 1 different blocks. For each ` ∈
{1, . . . , k − 1}, we proceed iteratively as follows. Suppose that at the beginning of the `-th
block we have a configuration in which every square q ∈ S`−1 contains the same number of
active vertices, and that these are equally distributed among all subsquares in σk(q) (note
that this is verified in the case ` = 1). Then, for each q ∈ S`−1, we proceed as follows.

Iteration: We proceed to distributing the descendants of the currently active vertices
in a way that we embed them at increasing distances from σk(q) as follows.

Define φ` : σk(q)→ σ`(q) as the bijection obtained by homothety with center c(q) and
ratio 2k−`. To each square p ∈ σk(q) we associate a sequence of squares (p1, . . . , pt) in Sk,
for some appropriately chosen t which does not depend on p, which satisfies that p1 = p,
pt ∈ σk(φ`(p)), and for all i ∈ {1, . . . , t− 1} we have ‖c(pi+1)− c(pi)‖ ≤ (1 + 7ε/8) r∗. Note
that the last condition together with the triangle inequality and (1) ensures that, for every
i ∈ {1, . . . , t− 1} and every choice of points x ∈ pi and y ∈ pi+1, we have

‖x−y‖ ≤ ‖x−c(pi)‖+‖c(pi)−c(pi+1)‖+‖c(pi+1)−y‖ ≤
ε

16
r∗+

(
1 +

7ε

8

)
r∗+

ε

16
r∗ = r. (2)

Hence, if there is an active vertex v in pi, it is possible to embed all children of v in pi+1.
Let us prove that such sequences of squares can indeed be constructed. Fix p ∈ σk(q) as

above. We begin by setting p1 := p. For each i ≥ 1, while ‖c(pi)− c(φ`(p))‖ > (1 + 7ε/8)r∗,
we choose a square pi+1 ∈ Sk such that

‖c(pi+1)−c(φ`(p))‖ ≤ ‖c(pi)−c(φ`(p))‖−
(

1 +
5ε

8

)
r∗ and ‖c(pi+1)−c(pi)‖ ≤

(
1 +

7ε

8

)
r∗.

(3)
Finally, when we reach a point where ‖c(pi)− c(φ`(p))‖ ≤ (1 + 7ε/8)r∗, we set t := i+ 1
and choose pt as a square in σk(φ`(p)) at smallest distance to c(pi). Note that (2) holds for
i = t− 1 and this choice of pt. It remains to prove that a choice as prescribed by (3) can
indeed be made.

Assume we have already defined pi so that it satisfies ‖c(pi)− c(φ`(p))‖ > (1 + 7ε/8)r∗.
Then, choose pi+1 ∈ Sk to be a square containing the point w on the segment c(pi)c(φ`(p))
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at distance exactly (1 + 3ε/4)r∗ from c(pi) (if more than one such square exists, we choose
one arbitrarily). Then, the triangle inequality and (1) imply that

‖c(pi+1)− c(φ`(p))‖ ≤ ‖w − c(φ`(p))‖+ ‖c(pi+1)− w‖
= ‖c(pi)− c(φ`(p))‖ − ‖c(pi)− w‖+ ‖c(pi+1)− w‖

≤ ‖c(pi)− c(φ`(p))‖ −
(

1 +
5ε

8

)
r∗

and

‖c(pi)− c(pi+1)‖ ≤ ‖c(pi)− w‖+ ‖w − c(pi+1)‖ ≤
(

1 +
3ε

4

)
r∗ +

ε

16
r∗ ≤

(
1 +

7ε

8

)
r∗,

so (3) is verified.
Now, once the sequence (p1, . . . , pt) is constructed, we can describe the distribution of

the vertices of the tree in each step of the `-th block of the algorithm. Recall that, at the
beginning of the `-th block of the algorithm, p1 contains some active vertices. Then, for
the next t− 1 steps, we simply embed the children of all currently active vertices in pi into
pi+1 arbitrarily (which is possible thanks to (2)). Lastly, in one more step of the algorithm,
we distribute the children of all currently active vertices in pt equally among the four
subsquares of σk(φ`(p)). Finally, if ` = k − 1 we terminate the subroutine, and otherwise
we increment the value of ` by 1 and proceed to the next block of the first subroutine.

2.2 The second subroutine

We say that two squares of S are adjacent if they share at least one corner vertex. Our
next goal is to embed the vertices in the remaining layers. In particular, if v ∈ Vm+2 lies
in q ∈ S, then we embed all descendants of v into q or a square adjacent to q. Note that,
for every such v, this is possible by our choice of k since the vertices in any square of side
length 21−k form a clique. To show that this can be done simultaneously for all v ∈ Vm+2,
we use Hall’s theorem. The application of Hall’s theorem is standard, hence we omit it, but
it can be found in the full version of our paper [5].

3 Proof sketch for the feasibility of the embedding al-
gorithm

We show that our embedding algorithm succeeds a.a.s. We make use of the following
distribution property of the vertices of G, which follows directly from Chernoff bounds.

Claim 1. A.a.s., for every square q ∈ S, the number of vertices of G in q is in [2−2kn−
n2/3, 2−2kn+ n2/3].

Following the description of the first subroutine, we must prove that it reaches a desired
configuration in a suitable number of steps. A bound on the number of steps is given by
the following claim.
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Claim 2. The first subroutine runs for at most (1− ε/4)h steps.

Proof. For every ` ∈ {1, . . . , k − 1}, we have that

‖c(p)− c(φ`(p))‖ ≤ ‖c(q)− c(φ`(p))‖ =
(21−` − 2−`)√

2
,

where the inequality holds since c(p) belongs to the segment c(q)c(φ`(p)) (recall that φ`(p)
is obtained from p by homothety with center c(q) and ratio 2k−` > 1). Hence, by (3), the
total number of steps performed by the first subroutine is at most

k−1∑
`=1

(
(21−` − 2−`)/

√
2

(1 + 5ε/8)r∗
+ 1

)
≤ k +

1/
√

2

(1 + 5ε/8)r∗
≤
(

1− ε

4

)
h. J

It follows that the total number of vertices embedded during the first subroutine is

m+2∑
i=0

2i ≤ 2−(h−m−2)n ≤ 2−εh/5n = o(2−2kn). (4)

Therefore, by Claim 1, there are sufficiently many vertices in each q ∈ Sk to guarantee that
the choices we made in the first subroutine can indeed be carried out.

Claims 1 and 2 guarantee that a.a.s. the algorithm succeeds. That is, a.a.s. we have an
embedding of the layers V0, . . . , Vm+2 of T into G and, moreover, each q ∈ Sk contains the
same number of vertices of Vm+2.
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