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Abstract

Resolving a problem of Conlon, Fox, and Rödl, we construct a family of hy-
pergraphs with arbitrarily large tower height separation between their 2-colour and
q-colour Ramsey numbers. The main lemma underlying this construction is a new
variant of the Erdős–Hajnal stepping-up lemma for a generalized Ramsey number
rk(t; q, p), which we define as the smallest integer n such that every q-colouring of the
k-sets on n vertices contains a set of t vertices spanning fewer than p colours. Our
results provide the first tower-type lower bounds on these numbers.
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1 Introduction
Let K(k)

n denote the complete k-uniform hypergraph on n vertices. We define rk(G; q)

for k, q ∈ N as the smallest integer n such that in every q-colouring of K(k)
n , there is

a monochromatic copy of the hypergraph G. For simplicity when G is K(k)
t , we write

rk(G; q) = rk(t; q). Observe that when q = 2, rk(G; 2) and rk(t; 2) coincide with the
classical Ramsey numbers rk(G) and rk(t), and we will denote them as such. One of the
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most central open problems in Ramsey theory is determining the growth rate of the 3-
uniform Ramsey number r3(t). A famous result of Erdős, Hajnal, and Rado [8] from the
60’s shows that there exist constants c and c′ such that

2ct2 ≤ r3(t) ≤ 22c
′t
.

Note that the upper bound is essentially exponential in the lower bound. Despite much
attention, this remains the state of the art. Perhaps surprisingly, if we allow four colours
instead of two, Erdős and Hajnal (see e.g. [10]) showed that the double-exponential upper
bound is essentially correct, i.e. there is a c > 0 such that r3(t; 4) ≥ 22ct . More recently
Conlon, Fox, and Sudakov [4] proved a super-exponential bound with three colours, that
is, that there exists c > 0 such that r3(t; 3) ≥ 2tc log t . Erdős conjectured that the double-
exponential bound should hold without using extra colours, offering $500 dollars for a
proof that r3(t) ≥ 22ct for some constant c > 0. Raising the stakes for this conjecture is the
ingenious stepping-up construction of Erdős and Hajnal (see e.g. [10]), which shows that
for all q and k ≥ 3,

rk+1(2t+ k − 4; q) > 2rk(t;q)−1. (1)

For the past 60 years, we have used (1) to stack our lower bounds for rk(t; q) upon that of
r3(t; q), yielding that rk(t) ≥ Tk−1(ct2), where Tk(x), the tower of height k in x, is defined
by T1(x) = x, Ti+1(x) = 2Ti(x). The corresponding upper bounds of rk(t) ≤ Tk(O(t))
(see [6, 7, 8]) are once again exponential in the lower bounds, and thus a positive resolution
of Erdős’s conjecture would be the decisive step in showing that rk(t) = Tk(Θ(t)) for all
k ≥ 3.

Due to the lack of progress on this central conjecture, it is natural to try to understand
just how significant a role the number of colours can play in hypergraph Ramsey num-
bers and whether or not there could really be such a large difference between r3(t) and
r3(t; 4). One argument in favour of the conjecture is that the reliance on extra colours to
prove a double-exponential lower bound may be a technical limitation of the stepping-up
construction. This is challenged by a stunning discovery of Conlon, Fox, and Rödl [3]
who exhibited an infinite family of 3-uniform hypergraphs called hedgehogs, whose Ramsey
numbers display strong dependence on the number of colours. Namely, they showed that
the 2-colour Ramsey number of hedgehogs is polynomial in their order, while the 4-colour
Ramsey number is at least exponential. To understand just how significant a role the
number of colours could play they asked the following:

Question 1.1. For any integer h ≥ 3, do there exist integers k and q and a family of
k-uniform hypergraphs for which the 2-colour Ramsey number grows as a polynomial in the
number of vertices, while the q-colour Ramsey number grows as a tower of height h?

Our main contribution is to answer this in the affirmative. Define the k-uniform bal-
anced hedgehog Ĥ(k)

t with body of order t to be the graph constructed as follows: take a
set S of t vertices, called the body, and for each subset X ⊂ S of order dk

2
e add a k-edge e

with e ∩ S = X such that for all e, f ∈ E(Ĥ
(k)
t ) we have e ∩ f ⊂ S. The hedgehog H(k)

t as
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defined by Conlon, Fox, and Rödl differs only in that they consider every X ⊂ S of order
k − 1 rather than dk

2
e. We observe that for k = 3 the two definitions coincide. When the

uniformity is clear from the context we shall drop the superscript.

Theorem 1.2. There exist c > 0 and q : N → N such that for all k ∈ N and sufficiently
large t, we have

(a) r2k+1(Ĥt) ≤ tk+3, and

(b) r2k+1(Ĥt; q(k)) ≥ Tbc log2 log2 kc(t) .

To prove this, we provide new stepping-up lemmas for a more general type of hypergraph
Ramsey numbers. Let rk(G; q, p) for q ≥ p be the smallest integer n such that in every
q-colouring of K(k)

n , there is a copy of the hypergraph G whose edges span fewer than p
colours. As before, we use rk(t; q, p) when G = K

(k)
t and suppress p when p = 2.

A standard application of the first moment method (see e.g. [1]) shows that for any
k, q ∈ N there exists c > 0 such that rk(t; q, q) ≥ 2ctk−1 for all t ∈ N. We note that in
the graph case (k = 2) the special case of q = p was already investigated by Erdős and
Szemerédi [9] in the 70’s; in fact, the more general case when p < q is also indirectly
discussed. They showed the following rather precise bounds: for all q � t, 2Ω(t/q) ≤
r2(t; q, q) ≤ qO(t/q) .

These generalized hypergraph Ramsey numbers were also considered in a special case
by Conlon, Fox, and Rödl [3] who asked if there exist an integer q and number c > 0 such
that r3(t; q, 3) ≥ 22ct . To date, the only nontrivial improvement on the first moment bound
has been made by Mubayi and Suk [11] who proved there exists c > 0 such that for q ≥ 9,
we have r3(t; q, 3) ≥ 2t2+cq for t ∈ N sufficiently large; for all other values of k, q, p ≥ 3, the
random construction is essentially the state of the art. Our knowledge (or lack thereof) is
thus summarised by the following bounds for k, q, p ≥ 3 and sufficiently large t ∈ N,

2tc ≤ rk(t; q, p) ≤ Tk(O(t)),

where c ≥ 1 is allowed to depend on k, q and p. Note that in this case our upper bounds
are a staggering tower of height k − 2 in the lower bounds.

A related notion called the set-colouring Ramsey number was introduced by Erdős,
Hajnal, and Rado in [8] and subsequently studied in [12] and much more recently in [5]
and [2]. Borrowing notation from [5], let Rk(t; q, s) denote the minimum number of vertices
such that every (q, s)-set colouring of K(k)

n , that is, a colouring in which each k-set is
assigned an element of

(
[q]
s

)
, contains a monochromatic K(k)

t . Here, monochromatic means
the intersection of the colour sets assigned to the edges is nonempty. Observe that certain
cases of Rk and rk coincide. For example, Rk(t; q, q − 1) = rk(t; q, q) and in general, we
have the bound

rk(t; q, p) ≤ Rk

(
t;

(
q

p− 1

)
,

(
q − 1

p− 2

))
.

We prove lower bounds on rk(t; q, p), thus giving lower bounds on certain set-colouring
Ramsey numbers. However, we are not able to definitively resolve any questions from [5],
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due to central gaps in our understanding of hypergraph Ramsey numbers. See Section 2
for more on this.

Our main tool in the proof of Theorem 1.2 is the development of two new stepping-up
constructions which yield the first tower-type results of their kind. We show the following
three stepping-up statements, listed in order of decreasing strength, with Ck = 1

k+1

(
2k
k

)
denoting the k-th Catalan number.

Theorem 1.3. Let k, q, p ≥ 3. There exist c ≥ 1 and t0 such that for all t > t0,

(a) if p ≤ Ck − 2, then rk+1(tc; q, p) > 2rk(t;q,p)−1,

(b) if p ≤ Ck, then rk+1(tc; 2q + p, p) > 2rk(t;q,p)−1, and

(c) if p ≤ k!, then r2k(tc; qp, p) > 2rk(t;q,p)−1.

Note that the growth rate in k which is implied by Part (c) (approximately a tower of
height log2 k) of Theorem 1.3 is much smaller than that of Parts (a) and (b) because we
can only step up at the cost of doubling the uniformity size. Unfortunately, this does not
allow us to answer the question of Conlon, Fox, and Rödl on r3(t; q, 3), since C2 = 2, but
already for k ≥ 4 we have the following two corollaries:

Corollary 1.4. For all k ≥ 4, there is q ∈ N and c > 0 such that rk(t; q, 5) ≥ Tk−1(tc).

Corollary 1.5. For all k ≥ 4, there is c > 0 such that rk(t; 3, 3) ≥ Tk−1(tc).

Observe that by the second corollary the growth rate of rk(t; 3, 3) matches the current
best lower bounds for rk(t) up to a polynomial in t. The reason we have an absolute
constant c in the exponent is due to the use of an Erdős-Hajnal type result on sequences.

The second main element of our proof connects the problem of avoiding monochromatic
balanced hedgehogs to that of avoiding cliques that span few colours. It is a straightforward
adaptation of ideas from Conlon, Fox, and Rödl [3].

Lemma 1.6. Given k, q, t ∈ N, let p =
(

2k+1
k+1

)
and q′ =

(
q
p

)
. Then

r2k+1(Ĥt; q
′, 2) > rk+1 (t; q, p+ 1)− 1.

Using this result along with Part (c) of Theorem 1.3 yields the lower bound in Theorem
1.2(b). It is natural to ask whether one can combine the growth rate in k given by Part (a)
of Theorem 1.3 with the ability to impose as many colours as in Part (c). Unfortunately,
the condition p ≤ Ck prevents us from using Part (a) as the right-hand side because
Ck = 1

k+1

(
2k
k

)
<

(
2k+1
k+1

)
. This is tantalisingly close, if not a little curious, as the dependence

on Ck comes from our exact solution to a subsequence avoidance problem. We show that
Ck presents a natural barrier in this endeavour. This barrier is made concrete by some
new and tight results on the Ramsey theory of sequences, including an Erdős-Hajnal-type
result.
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2 Moving Forward
Both of our new stepping-up constructions rely on a dichotomy: either we can find many
suitable substructures within the δ-sequences (which give rise to many colours) or we must
have a long monotonic sequence (which allows us to use induction). Since for every k-edge
there are at most k! distinct permutations, our methods fail to give good lower bounds for
rk(t; q, p) whenever k � p. Even in the simplest case r3(t; q, 3), we were not able to prove
a double exponential lower bound, leaving open the following question of Conlon, Fox, and
Rödl on r3(t; q, 3).

Problem 2.1. [3, Problem 1] Is there an integer q, a positive constant c, and a q-colouring
of the 3-uniform hypergraph on 22ct vertices such that every subset of order t receives at
least 3 colours?

We propose here a much weaker problem than Problem 2.1 which we were not able to
resolve. We note that a negative answer would uncover a radical new phenomenon in the
Ramsey numbers of hypergraphs.

Problem 2.2. Does there exist k ∈ N such that the following holds? For all p ∈ N there
exist q ∈ N and c > 0 such that rk(t; q, p) ≥ 22t

c

for all t sufficiently large.

A similar but much more ambitious problem was posed in [5].

Problem 2.3. [5, Problem 6.3] Determine the tower height of Rk(n; r, r − 1) = rk(n; r, r)
for all k ≥ 3 and r ≥ 2.

The authors of [5] note the apparent difficulty of Problem 2.3 and ask the following weaker
question. Is there a fixed integer c such that Rk(n; r, r − 1) ≥ Tk−c(n) for every k ≥ 3
and r ≥ 2? We cannot answer this question, but using Theorem 1.3(a), we can prove
Rk(n; r, r−1) is at least a tower of height roughly k−0.5 log2 r. Any improvement beyond
this bound would likely be very interesting.

We make the following conjecture regarding the Ramsey numbers of k-uniform hedge-
hogs. This would in particular demonstrate that the 2-colour and q-colour Ramsey numbers
of these hedgehogs, unlike those of balanced hedgehogs, do not differ by arbitrarily large
tower heights.

Conjecture 2.4. There is ` ∈ N such that for every positive integer k, for every sufficiently
large t,

rk(H
(k)
t ) ≥ Tk−`(t).
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