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Abstract

The bipartite independence number of a graph G, denoted as α̃(G), is the minimal
number k such that there exist positive integers a and b with a + b = k + 1 with
the property that for any two sets A,B ⊆ V (G) with |A| = a and |B| = b, there
is an edge between A and B. McDiarmid and Yolov showed that if δ(G) ≥ α̃(G)
then G is Hamiltonian, extending the famous theorem of Dirac which states that if
δ(G) ≥ |G|/2 then G is Hamiltonian. In 1973, Bondy showed that, unless G is a
complete bipartite graph, Dirac’s Hamiltonicity condition also implies pancyclicity,
i.e., existence of cycles of all the lengths from 3 up to n. In this paper we show that
δ(G) ≥ α̃(G) implies that G is pancyclic or that G = Kn

2
,n
2
, thus extending the result

of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.
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1 Introduction
The notion of Hamiltonicity is one of most central and extensively studied topics in Combi-
natorics. Since the problem of determining whether a graph is Hamiltonian is NP-complete,
a central theme in Combinatorics is to derive sufficient conditions for this property. A clas-
sic example is Dirac’s theorem [14] which dates back to 1952 and states that every n-vertex
graph with minimum degree at least n/2 is Hamiltonian. Since then, a plethora of inter-
esting and important results about various aspects of Hamiltonicity have been obtained,
see e.g. [1, 11, 12, 13, 18, 24, 26, 27, 32], and the surveys [20, 29].
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Besides finding sufficient conditions for containing a Hamilton cycle, significant atten-
tion has been given to conditions which force a graph to have cycles of other lengths.
Indeed, the cycle spectrum of a graph, which is the set of lengths of cycles contained in
that graph, has been the focus of study of numerous papers and in particular gained a
lot of attention in recent years [2, 3, 8, 16, 19, 21, 23, 28, 31, 34]. Among other graph
parameters, the relation of the cycle spectrum to the minimum degree, number of edges,
independence number, chromatic number and expansion of the graph have been studied.

We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers
from 3 up to n. Bondy suggested that in the cycle spectrum of a graph, it is usually hardest
to guarantee the existence of the longest cycle, i.e. a Hamilton cycle. This intuition was
captured by his famous meta-conjecture [5] from 1973, which asserts that any non-trivial
condition which implies Hamiltonicity, also implies pancyclicity (up to a small class of
exceptional graphs). As a first example, he proved in [6] an extension of Dirac’s theorem,
showing that minimum degree at least n/2 implies that the graph is either pancyclic or
that it is the complete bipartite graph Kn

2
,n
2
. Further, Bauer and Schmeichel [4], relying

on previous results of Schmeichel and Hakimi [33], showed that the sufficient conditions
for Hamiltonicity given by Bondy [7], Chvátal [10] and Fan [17] all imply pancyclicity, up
to a certain small family of exceptional graphs.

Another classic Hamiltonicity result is the Chvátal-Erdős theorem, which states that
κ(G) ≥ α(G) implies that G is Hamiltonian, where κ(G) is the connectivity of G, and
α(G) its independence number. Motivated by Bondy’s meta-conjecture, Jackson and Or-
daz [22] thirty years ago suggested that κ(G) > α(G) already implies pancyclicity. The
first progress towards this problem was obtained by Keevash and Sudakov, who showed
pancyclicity when κ(G) ≥ 600α(G). Recently, in [15] we were able to resolve the Jackson-
Ordaz conjecture asymptotically, proving that κ(G) ≥ (1 + o(1))α(G) is already enough
for pancyclicity. It is worth mentioning that, in all the listed work, the proof that the
Hamiltonicity condition also implies pancyclicity is usually significantly harder than just
proving Hamiltonicity, and requires new ideas and techniques.

An interesting sufficient condition for Hamiltonicity was given by McDiarmid and Yolov
[30]. To state their result, we need the following natural graph parameter. For a graph
G, its bipartite independence number α̃(G) is the minimal number k, such that there exist
positive integers a and b with a+ b = k + 1, such that between any two sets A,B ⊆ V (G)
with |A| = a and |B| = b, there is an edge between A and B. Notice that we always have
that α(G) ≤ α̃(G). Indeed, if α̃(G) = k, then G does not contain independent sets I of
size at least k + 1, since evidently for every a + b = k + 1, there would exist disjoint sets
A,B ⊂ I, so that |A| = a and |B| = b and with no edge between A and B. Let us now
state the result of McDiarmid and Yolov.

Theorem 1 ([30]). If δ(G) ≥ α̃(G), then G is Hamiltonian.

This result implies Dirac’s theorem, because if δ(G) ≥ n/2, then dn/2e ≥ α̃(G), as for
every |A| = 1 and |B| = dn/2e there is an edge between A and B. Hence also δ(G) ≥
dn/2e ≥ α̃(G), so G is Hamiltonian.
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Naturally, the immediate question which arises is whether the McDiarmid-Yolov con-
dition implies that the graph satisfies the stronger property of pancyclicity. As a very
preliminary step in this direction, Chen [9] was able to show that for any given positive
constant c, for sufficiently large n it holds that if G is an n-vertex graph with α̃(G) = cn
and δ(G) ≥ 10

3
cn, then G is pancyclic. In this paper we completely resolve this prob-

lem, showing that δ(G) ≥ α̃(G) implies that G pancyclic or G = Kn
2
,n
2
. This generalizes

the classical theorem of Bondy [6], and gives additional evidence for his meta-conjecture,
mentioned above.

Theorem 2. If δ(G) ≥ α̃(G), then G is pancyclic, unless G is complete bipartite G =
Kn

2
,n
2
.

Our proof is completely self-contained and relies on a novel variant of Pósa’s celebrated
rotation-extension technique, which is used to extend paths and cycles in expanding graphs
(see, e.g., [32]). Define the graph C̃`, to be the cycle of length ` together with an additional
vertex which is adjacent to two consecutive vertices on the cycle (thus forming a triangle
with them). For each ` ∈ [3, n − 1], our goal is to either find a C̃` or a C̃`+1, which is
clearly enough to show pancyclicity. The proof is recursive in nature, as we will derive the
existence of a C̃` or a C̃`+1 from the existence of a C̃`−1. In our setting, we would like to
apply the rotation-extension technique to the C̃`−1 with the additional requirement that
the extended cycle preserves the attached triangle. However, this is not possible in general
and from the existence of a C̃`−1 we will in turn derive the existence of a gadget denoted as
a switch, which is a path with triangles attached to it, to which we can apply our rotation-
extension technique. One of the key ideas is to consider the switch which is optimal with
respect to how close the triangles are to the beginning of the path. The application of the
rotation-extension technique to such an optimal switch will then result in either a C̃`, a
C̃`+1, or a better switch, contradicting the optimality of the original switch.

References
[1] M. Ajtai, J. Komlós, and E. Szemerédi. First occurrence of Hamilton cycles in random graphs.

In Cycles in graphs (Burnaby, B.C., 1982), Vol. 115, North-Holland Mathematical Studies,
North-Holland, Amsterdam, 115:173–178, 1985.

[2] N. Alon and M. Krivelevich. Divisible subdivisions. Journal of Graph Theory, 98(4):623–629,
2021.

[3] Y. Alon, M. Krivelevich, and E. Lubetzky. Cycle lengths in sparse random graphs. Random
Structures & Algorithms, 61(3):444–461, 2022.

[4] D. Bauer and E. Schmeichel. Hamiltonian degree conditions which imply a graph is pancyclic.
Journal of Combinatorial Theory, Series B, 48(1):111–116, 1990.

[5] J. A. Bondy. Pancyclic graphs: recent results, infinite and finite sets. In Colloq. Math. Soc.
János Bolyai, Keszthely, pp. 181–187, 1973.

[6] J. A. Bondy. Pancyclic graphs I. Journal of Combinatorial Theory, Series B, 11(1):80–84,
1971.



A generalization of Bondy’s pancyclicity theorem 371

[7] J. A. Bondy. Longest paths and cycles in graphs of high degree. Department of Combinatorics
and Optimization, University of Waterloo, 1980.

[8] M. Bucić, L. Gishboliner, and B. Sudakov. Cycles of many lengths in Hamiltonian graphs.
Forum of Mathematics, Sigma, 10, E70, 2022.

[9] M. Chen Hamilton-connected, vertex-pancyclic and bipartite holes. Discrete Mathematics,
345(12):113158, 2022.

[10] V. Chvátal. On Hamilton’s ideals. Journal of Combinatorial Theory, Series B, 12(2):163–168,
1972.

[11] V. Chvátal and P. Erdős. A note on Hamiltonian circuits. Discrete Mathematics, 2(2):111–
113, 1972.

[12] B. Csaba, D. Kühn, A. Lo, D. Osthus, and A. Treglown. Proof of the 1-factorization and
Hamilton decomposition conjectures. Memoirs of the American Mathematical Society, 244,
monograph 1154, 170 pages, 2016.

[13] B. Cuckler and J. Kahn. Hamiltonian cycles in Dirac graphs. Combinatorica, 29(3):299–326,
2009.

[14] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical
Society, 3(1):69–81, 1952.

[15] N. Draganić, D. Munhá Correia and B. Sudakov. Chvátal-Erdős condition for pancyclicity.
arXiv:2301.10190 2023.

[16] N. Draganić, D. Munhá Correia and B. Sudakov. Pancyclicity of Hamiltonian graphs.
arXiv:2209.03325 2022.

[17] G. H. Fan. New sufficient conditions for cycles in graphs. Journal of Combinatorial Theory,
Series B, 37(3):221–227, 1984.

[18] A. Ferber, E. Long, and B. Sudakov. Counting Hamilton decompositions of oriented graphs.
International Mathematics Research Notices, 2018(22):6908–6933, 2018.

[19] L. Friedman and M. Krivelevich. Cycle lengths in expanding graphs. Combinatorica,
41(1):53–74, 2021.

[20] R. J. Gould. Recent advances on the Hamiltonian problem: Survey III. Graphs and Combi-
natorics, 30(1):1–46, 2014.

[21] H. Liu and R. Montgomery. A solution to Erdős and Hajnal’s odd cycle problem. arXiv
preprint arXiv:2010.15802, 2020.

[22] B. Jackson and O. Ordaz. Chvátal-Erdős conditions for paths and cycles in graphs and
digraphs. A survey. Discrete mathematics, 84(3):241–254, 1990.

[23] P. Keevash and B. Sudakov. Pancyclicity of Hamiltonian and highly connected graphs.
Journal of Combinatorial Theory, Series B, 100(5):456–467, 2010.

[24] M. Krivelevich. The critical bias for the Hamiltonicity game is (1 + o(1))n/ lnn. Journal of
the American Mathematical Society, 24(1):125–131, 2011.

[25] M. Krivelevich and B. Sudakov. Sparse pseudo-random graphs are Hamiltonian. J. Graph
Theory, 42(1):17–33, 2003.

[26] M. Krivelevich, C. Lee, and B. Sudakov. Robust Hamiltonicity of Dirac graphs. Transactions
of the American Mathematical Society, 366(6):3095–3130, 2014.

[27] D. Kühn and D. Osthus. Hamilton decompositions of regular expanders: a proof of Kelly’s
conjecture for large tournaments. Advances in Mathematics, 237:62–146, 2013.

[28] C.-H. Liu and J. Ma. Cycle lengths and minimum degree of graphs. Journal of Combinatorial



A generalization of Bondy’s pancyclicity theorem 372

Theory, Series B, 128:66–95, 2018.
[29] D. Kühn and D. Osthus. Hamilton cycles in graphs and hypergraphs: an extremal perspective.

In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. IV, pp.
381–406. Kyung Moon Sa, Seoul, 2014.

[30] C. McDiarmid and N. Yolov. Hamilton cycles, minimum degree, and bipartite holes. Journal
of Graph Theory, 86(3):277–285, 2017.

[31] K. G. Milans, F. Pfender, D. Rautenbach, F. Regen, and D. B. West. Cycle spectra of
Hamiltonian graphs. Journal of Combinatorial Theory, Series B, 102(4):869–874, 2012.

[32] L. Pósa, Hamiltonian circuits in random graphs. Discrete Mathematics, 14(4):359–364, 1976.
[33] E. F. Schmeichel and S. L. Hakimi. A cycle structure theorem for Hamiltonian graphs.

Journal of Combinatorial Theory, Series B, 45(1):99–107, 1988.
[34] J. Verstraëte. Extremal problems for cycles in graphs. In Recent trends in combinatorics, pp.

83–116. Springer, 2016.


