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When is Cartesian product a Cayley
graph?

(Extended abstract)
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Abstract

A graph is said to be Cayley graph if its automorphism group admits a regular
subgroup. Automorphisms of the Cartesian product of graphs are well understood,
and it is known that Cartesian product of Cayley graphs is a Cayley graph. It is nat-
ural to ask the reverse question, namely whether all the factors of Cartesian product
that is a Cayley graph have to be Cayley graphs. The main purpose of this paper is
to initiate the study of this question.
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1 Introduction
Throughout this paper graphs are assumed to be finite, simple, and connected, and groups
are finite. Given a graph Γ we let V (Γ), E(Γ), and Aut(Γ) be the set of vertices, the set
of edges, and the automorphism group of Γ, respectively.

Let G be a finite group and S ⊆ G \ {1} an inverse closed subset of G. Then the
Cayley graph Cay(G,S) on G with respect to S is a graph with vertex set G and edge set
{{g, gs} | g ∈ G, s ∈ S}. It is well-known that a graph Γ is a Cayley graph on a group G
if there exists a regular subgroup of Aut(Γ) isomorphic to G (see [5]).
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Recall that the Cartesian product Γ1� · · ·�Γk of graphs Γ1, . . ., Γk has vertex set
V (Γ1) × · · · × V (Γk) with two distinct vertices being adjacent if they are adjacent in one
of the coordinates and coincide in all other coordinates. Recall also that two graphs are
called relatively prime if there exists no non-trivial graph that is a factor – with respect
to the Cartesian product – of both of them. A graph is said to be prime with respect to
the Cartesian product if it cannot be factored as a Cartesian product of two non-trivial
graphs. For a graph Γ, the Cartesian product Γ� . . .�Γ︸ ︷︷ ︸

n times

is denoted with Γ�n.

It is well-known that the Cartesian product of Cayley graphs is a Cayley graph. A
natural question is to consider whether the converse is true, that is, if the Cartesian product
of graphs is a Cayley graph, does each of the factors have to be a Cayley graph? This
is the main motivation for the work presented in this article. We provide partial results
showing that Cartesian products involving certain vertex-transitive non-Cayley graphs are
not Cayley (for example, every graph having a Petersen graph as one of the factors is
non-Cayley). We are not aware of any example of a Cayley graph having a non-Cayley
factor.

2 Preliminaries
We start by recalling the structure of the automorphism group of the Cartesian products.

Theorem 2.1. [2, Theorem 6.8] Let Γ be a connected graph with prime factorization
Γ = Γ1�Γ2� . . .�Γk. Then for any automorphism ϕ of Γ, there is a permutation π of
{1, 2, . . . , k} and isomorphisms ϕi : Γπ(i) → Γi for which

ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), . . . , ϕk(xπ(k))).

Let Gi ≤ Sym(Vi) for i ∈ {1, . . . , n}. The group G1 × G2 × . . . × Gn acts canonically
on V1×V2× . . .×Vn in such a way that gi ∈ Gi is applied to the i-th coordinate. We have
the following simple observation.

Lemma 2.2. Let Gi ≤ Sym(Vi) for i ∈ {1, . . . , n} be transitive groups. If there exists a
regular subgroup of G1 ×G2 . . .×Gn acting canonically on V1 × V2 × . . .× Vn, then every
Gi admits a regular subgroup.

Proof. Let H be a regular subgroup of G1×G2 . . .×Gn. Since H is regular, it follows that
|H| = |V1| · . . . · |Vn|. Let j ∈ {1, . . . , n}, and let vi ∈ Vi be arbitrary for i 6= j. Let K =
{(g1, . . . , gn) ∈ H | gi(vi) = vi i ∈ {1, . . . , n} \ {j}} and K(j) = {gj | (g1, . . . , gj, . . . , gn) ∈
K}. It is easy to see that K(j) is a subgroup of Gj, and that the transitivity of H implies
that K(j) is transitive subgroup of Gj. Moreover, if K(j) is not semiregular, then H would
contain a non-identity element fixing a point of V1 × . . .× Vn, contrary to the assumption
that H is regular. We conclude that K(j) is a regular subgroup of Gj. Since j is arbitrary,
the result follows.
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The following result follows directly by applying Lemma 2.2 to the fact that the auto-
morphism group of Cartesian product of relatively prime graphs is the direct product of
the automorphism groups of the factors, see [2, Corollary 6.12] (see also [3, Theorem 3.1]).

Theorem 2.3. Let Γ1 and Γ2 be two connected relatively prime graphs with respect to the
Cartesian product and let Γ = Γ1�Γ2. Then Γ is a Cayley graph if and only if both Γ1 and
Γ2 are Cayley graphs.

In light of Theorem 2.3, the question of which Cartesian products are Cayley is reduced
to the question when is a Cartesian power of a graph isomorphic to a Cayley graph. In
the following result the automorphism group of a Cartesian power of a graph is given. Let
us first recall the definition of a wreath product of permutation groups. Let G ≤ Sym(V )
and H ≤ Sn. The wreath product of G by H denoted by G oH is the set of all permutations
((g1, . . . , gn), h) of V n (where g1, . . . , gn ∈ G and h ∈ H) such that ((g1, . . . , gn), h) :
(v1, . . . , vn) 7→ (gh(1)(vh(1), . . . , gh(n)(vh(n)).

Lemma 2.4. Let Γ be a graph that is prime with respect to the Cartesian product. Then
Aut(Γ�n) ∼= Aut(Γ) o Sn.

3 Main results
The following result giving a bound on the order of a Sylow p-subgroup of the symmetric
group Sn will be needed later.

Lemma 3.1. Let n ≥ 1 be an integer and p a prime divisor of n. A Sylow p-subgroup of
Sn has order less than pn.

Proof. Let n = a0 +a1p+ . . .+akp
k with 0 ≤ ai ≤ p−1. By [4, pg. 11] a Sylow p-subgroup

of Sn has order pM , where

M =
k∑
i=1

ai(1 + p+ p2 + . . .+ pi−1) =
k∑
i=1

ai
pi − 1

p− 1

=
k∑
i=1

[
aip

i

p− 1
− ai
p− 1

]
=

∑k
i=1 aip

i

p− 1
−

k∑
i=1

ai
p− 1

≤ n

p− 1
−

k∑
i=1

ai
p− 1

<
n

p− 1
≤ n.

An automorphism of a graph is said to be semiregular if all the cycles in its cyclic
decomposition have equal lengths.
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Theorem 3.2. Let Γ be a vertex-transitive graph such that Aut(Γ) has no semiregular
element of order p for some prime p dividing |V (Γ)|, and Γ is prime with respect to the
Cartesian product. Then Γ�n is not Cayley for every n ≥ 1.

Proof. We first observe that Γ is not Cayley, as if it were, it would contain a regular
subgroup R of order n. Then R has a subgroup of prime order p, which is necessarily
semiregular, contradicting out assumption.

Suppose that R is a regular subgroup of Aut(Γ�n). As Γ is prime with respect to the
Cartesian product, by Lemma 2.4, we have that Aut(Γ�n) = Aut(Γ) o Sn with the product
action. Let P be a Sylow p-subgroup of R. Observe that P has order at least pn. Define
ϕ : P → Sn with ϕ((g1, . . . , gn), σ) = σ (where gi ∈ Aut(Γ) and σ ∈ Sn). Observe that
ϕ is a homomorphism. If the kernel of ϕ is trivial, then P is isomorphic to a subgroup
of Sn. However, by Lemma 3.1, the order of a Sylow p-subgroup of Sn is less than pn. It
follows that the kernel of ϕ is not trivial. It follows that there exists a non-identity element
γ = ((g1, . . . , gn), id) ∈ P . Without loss of generality we may assume that the order of γ
is p (by taking the p-th powers of γ if necessary), implying that each gi is identity or of
order p. Since by the assumption, Aut(Γ) has no semiregular element of order p, it follows
that each gi of order p fixes a vertex of Γ. Hence γ fixes some point in V (Γ)n. But as R is
regular, and γ ∈ P ≤ R, this means γ = 1, a contradiction.

Corollary 3.3. No Cartesian power of the Petersen graph is isomorphic to a Cayley graph.

Proof. Let P denote the Petersen graph. By Theorem 3.2, we need only show that Aut(P )
has no semiregular element of order 2. The automorphism group of the Petersen graph
is isomorphic to the action of S5 on the 2-subsets of {1, 2, 3, 4, 5} by [1, Theorem 2.1.4].
The elements of order 2 in S5 are a product of two transposition as well as transpositions.
It is easy to see that the 2-subset of {1, 2, 3, 4, 5} which is permuted in a transposition, is
fixed by a transposition, and so no element of order 2 in the automorphism group of the
Petersen graph is semiregular.

Theorem 3.4. Let Γ be a vertex-transitive graph that is not isomorphic to a Cayley graph,
whose automorphism group has order relatively prime to n!. Then Γ�n is not isomorphic
to a Cayley graph.

Proof. Suppose that R is a regular subgroup of Aut(Γ�n). Then R has order relatively
prime to n!, in which case every element of R must fix every factor of V (Γ)n (i.e. no
element of R can permute factors of V (Γ)n). This means that R ≤ Aut(Γ)n, hence the
result follows by Lemma 2.2.

Corollary 3.5. Let Γ be a vertex-transitive graph of odd order that is not a Cayley graph.
Then Γ�Γ is not isomorphic to a Cayley graph.

In the following result we study the structure of a transitive permutation group G
admitting no regular subgroup, but such that A oS2 in the product action admits a regular
subgroup.
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Theorem 3.6. Let A ≤ Sym(V ) be transitive. If A o S2 admits a regular subgroup (in the
product action) then A admits a regular subgroup or A admits a semiregular subgroup with
two orbits.

Proof. Let H ≤ A o S2 be a regular subgroup. If H ≤ A × A, then by Lemma 2.2 it
follows that A admits a regular subgroup. Suppose that H is not contained in A×A. Let
H = H ∩ (A× A). Observe that H is an index two subgroup of H. Since H is regular, it
follows that H is semiregular with two orbits.

Let H(v) = {h1 ∈ A | ∃h2 ∈ Av such that (h1, h2) ∈ H}. Observe that H(v) is a
subgroup of A. Moreover, it is semiregular, since H is semiregular. If H(v) is transitive
or has two orbits then we are done. Hence, we may assume that |OrbH(v)(x)| ≤ |V |/3 for
every v ∈ V .

Let O be one of the two orbits of H on V × V . Let O(v) = {y ∈ V | (y, v) ∈ O}. Let
x ∈ O(v) be arbitrary. We claim that O(v) = OrbH(v)(x). Let y ∈ O(v). Then (x, v) and
(y, v) belong to the same orbit O of H, hence there exists (h1, h2) ∈ H such that h1(x) = y
and h2(v) = v. It follows that h1 is an element of H(v) mapping x to y. This shows that
O(v) is contained in OrbH(v)(x).

Let z be an element of OrbH(v)(x). There exists h1 ∈ H(v) such that h1(x) = z. By
the definition of H it follows that there exists h2 ∈ A fixing v such that (h1, h2) ∈ H.
This shows that (h1, h2) is an element of H mapping (x, v) to (z, v), hence (x, v) and (z, v)
belong to the orbit O, implying that z ∈ O(v). This shows that O(v) = OrbH(v)(x).

It is easy to see that O =
⋃
v∈V O(v) is a partition of O, and that |O| =

∑
v∈V |O(v)|.

Since |OrbH(v)(x)| ≤ |V |/3, it follows that |O| ≤ |V |2/3, contradicting the assumption
that |O| = |V |2/2. The obtained contradiction shows that H(v) ≤ A must be regular or
semiregular with two orbits for some v ∈ V .

Remark 3.7. There are examples of transitive groups without regular subgroups such that
their wreath product with S2 in the product action admits regular subgroups. For example,
TransitiveGroups(24)[675] (of order 288 and degree 24) is one such group. However, the
authors are not aware of any such group which is automorphism group of a graph.

Corollary 3.8. Let Γ be a graph that is prime with respect to the Cartesian product such
that Aut(Γ) admits no semiregular subgroup with two orbits. Then Γ�Γ is not isomorphic
to a Cayley graph.

Remark 3.9. There exist infinitely many vertex-transitive graphs of even order that do not
admit a semiregular subgroup with two orbits. One such graph is the Tutte-Coxeter graph,
which is a cubic symmetric graph of order 30. Moreover, there exist vertex-transitive graphs
of even order admitting a semiregular automorphism of order p, for every prime divisor of
the order of the graph, but not admitting a semiregular subgroup with 2 orbits. In particular,
any vertex-transitive graph of order 2n without a semiregular subgroup with 2 orbits is such
an example.
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