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Abstract

We show that there exist a constant c and a function f such that the k-power of a
planar graph with maximum degree ∆ is isomorphic to a subgraph of H�P �Kf(∆,k)
for some graph H with treewidth at most c and some path P . This is the first product
structure theorem for k-powers of planar graphs, where the treewidth of H does not
depend on k. We actually prove a stronger result, which implies an analogous product
structure theorem for other graph classes, including k-planar graphs (of arbitrary
degree).

Our proof uses a new concept of blocking partitions which is of independent
interest. An `-blocking partition of a graph G is a partition of the vertex set of G
into connected subsets such that every path in G of length greater than ` contains
two vertices in one set of the partition. The key lemma in our proof states that there
exists a positive integer ` such that every planar graph of maximum degree ∆ has an
`-blocking partition with parts of size bounded in terms of ∆.
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1 Introduction
Given two graphs1 G and H, their strong product G � H is defined as the graph on
V (G) × V (H) where distinct vertices (u1, v1), (u2, v2) ∈ V (G) × V (H) are adjacent if
u1 = u2 and v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1 = v2, or u1u2 ∈ E(G) and v1v2 ∈ E(H).

Graph product structure theory describes complicated graphs as subgraphs of the strong
products of graphs with a simple structure like graphs of bounded treewidth2, paths, or
small complete graphs. Arguably the most important result of this theory is the product
structure theorem for planar graphs by Dujmović, Joret, Micek, Morin, Ueckerdt, and
Wood [7], which has been the key to solving many long-standing problems [1, 2, 4–7, 9, 10].
This theorem states that every planar graph is contained in H � P �K3 for some graph
H with tw(H) 6 3 and some path P . Here a graph G is contained in a graph G′ if G is
isomorphic to a subgraph of G′.

Another product structure for planar graphs by Ueckerdt, Wood, and Yi [14] states
that every planar graph is contained in H � P for some graph H with tw(H) 6 6 and
some path P . Note that H �P is isomorphic to H �P �K1. These two product structure
theorems for planar graphs illustrate a trade-off between the treewidth of H and the size of
the complete graph involved in the product: If we want to find some fixed planar graph in
a graph of the form H � P �Kd where tw(H) 6 c for some constant c and P is a path,
then we can either have c = 3 and d = 3, or c = 6 and d = 1.

There are many other graph classes G for which there exist constants c and d such
that every G ∈ G is isomorphic to a subgraph of H � P � Kd for some graph H with
tw(H) 6 c and some path P [3, 7, 8, 11, 12]. The strong product H�P �Kd is isomorphic
to (H �Kd)� P �K1 and tw(H �Kd) 6 d(c+ 1)− 1, so it is always possible to drive d
down to 1, while minimising c is usually more difficult. Moreover, in many applications
of such product structure theorems, the main dependency is on c. Therefore, the primary
goal is to minimise c, whereas minimising d is a secondary goal. This paper proves new
product structure theorems for k-powers of planar graphs of bounded degree and k-planar
graphs. The distinguishing feature of our results is that the bound c on tw(H) is an absolute
constant which does not depend on k.

For an integer k > 1, the k-power of a graph G is the graph Gk on V (G) where two
distinct vertices u and v are adjacent if and only if the distance between u and v in G is at
most k. Dujmović et al. [8] proved that for every planar graph G of maximum degree ∆,
and for every integer k > 1, the k-power Gk is contained in J � P �K6k∆k(k3+3k) for some
graph J of treewidth at most

(
k+3

3

)
− 1 and some path P . Note that dependence on ∆ is

unavoidable since, for example, if G is the complete (∆− 1)-ary tree of height k, then G2k

is a complete graph on roughly (∆− 1)k vertices. Ossona de Mendez [13] asked whether
this bound on tw(H) could be made independent of k. We show that indeed this is the

1 We consider simple, finite, undirected graphs G with vertex-set V (G) and edge-set E(G).
2 The treewidth tw(H) of a graph H, is the least integer k such that H is a subgraph of a graph G on a

set {v1, . . . , vn} such that n > k + 1 and for each i ∈ {k + 1, . . . , n}, the neighbours of vi in {v1, . . . , vi−1}
form a clique of size k in G.
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case.

Theorem 1. There exist a constant c and a function f such that for every planar graph G
of maximum degree ∆ and every integer k > 1, the graph Gk is contained in H�P �Kf(∆,k)
for some graph H with tw(H) 6 c and some path P .

For an integer k > 1, a k-planar graph is a graph which has a drawing on the plane such
that no three edges cross at a single point and each edge is involved in at most k crossings.
Dujmović et al. [8] proved that every k-planar graph is contained in H � P �K18k2+48k+30,
for some graph H with tw(H) 6

(
k+4

3

)
− 1 and some path P . Dujmović et al. [8] asked

whether this bound on tw(H) could be made independent of k. We give an affirmative
answer to this question.

Theorem 2. There exist a constant c and a function f such that every k-planar graph G
is contained in H � P �Kf(k) some graph H with tw(H) 6 c and some path P .

Theorems 1 and 2 follow from Theorem 4, which we formulate in Section 2. In particular,
in our proof the value of c is the same in both theorems and equal to 15086399. This value
is not optimal, but instead of optimising the constant c we chose to simplify the proof.

The proof of Theorem 4 uses a new concept of “blocking partitions”. For an integer
` > 1, an `-blocking partition of a graph G is a partition R of V (G) such that every set in
R induces a connected subgraph of G and every path of length greater than ` in G contains
two vertices in one part of R. The width of R is the maximum size of a part of R.

The following lemma plays the key role in our proof.

Lemma 3. There exists a function f such that every planar graph of maximum degree at
most ∆ has a 222-blocking partition of width at most f(∆).

The construction of a 222-blocking partition is inspired by chordal partitions of triangu-
lations by van den Heuvel et al. [15]. In their construction, a triangulation G is partitioned
into paths P1, . . . , Pm where each path Pj is a shortest path between two distinguished
vertices in one component of G− ⋃i<j V (Pi). In our construction, we partition a planar
graph G into trees T1, . . . , Tm where each Tj is obtained as follows. First, we define T 0

j as a
smallest tree in G−⋃i<j V (Ti) which contains some distinguished set of vertices of bounded
size, and then, the tree Tj is obtained from T 0

j by attaching all adjacent vertices as leaves.
Finally, we split each tree Tj into subtrees of bounded size by removing an appropriate set
of edges. Then, the vertex-sets of these subtrees define the desired 222-blocking partition
of G.

Lemma 3 is the most technical part of our proof, and we do not include its proof here.
Instead, we sketch the proof of the main theorems assuming Lemma 3. The partition in
our proof of Lemma 3, is actually `-blocking for some value ` significantly smaller than 222,
but we decided to prove a worse bound on ` for simplicity’s sake.
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2 The main result
A congested model of a graph G′ in a graph G is a set (Bx : x ∈ V (G′)) of connected
subgraphs of G such that for every edge xy ∈ E(G′), the subgraphs Bx and By touch in
G, i.e. they share a vertex or there is an edge between V (Bx) and V (By) in G. A rooted
congested model of G′ in G is a set ((Bx, vx) : x ∈ V (G′)) such that (Bx : x ∈ V (G′)) is a
congested model of G′ in G and vx ∈ V (Bx) for each x ∈ V (G′). We call a rooted congested
model ((Bx, vx) : x ∈ V (G′)) in G an (r,∆, d)-model if
• in each Bx, all vertices are at distance at most r from vx,
• in each Bx, every vertex distinct from vx has degree at most ∆, and
• for every u ∈ V (G), there exist at most d vertices x ∈ V (G′) with u ∈ V (Bx).

We call a graph G′ an (r,∆, d)-minor of G if there exists an (r,∆, d)-model of G′ in G.
Note that G′ is a minor of G if and only if G′ is an (r,∆, 1)-minor of G for some r,∆ > 0.
A graph G′ is an r-shallow minor of G if G′ is an (r,∆, 1)-minor of G for some ∆ > 0.
Observe that if G′ is an (r,∆, d)-minor of a graph G, then G′ is an r-shallow minor of
G�Kd.

If G is a graph with maximum degree at most ∆, then Gk is an (r,∆, d)-minor of G
for r = bk/2c and d = ∑bk/2c

i=0 ∆i, as witnessed by the rooted congested model ((Bx, x) :
x ∈ V (Gk)) where each Bx is the subgraph of G induced by the vertices at distance at
most bk/2c from x. Furthermore, it is easy to see that every k-planar graph G′ is an
(r,∆, d)-minor of G for r = dk/2e and ∆ = d = 2, where G is the planar graph obtained
from G′ by adding a dummy vertex at each intersection point. Therefore, Theorems 1 and 2
follow from the following theorem.

Theorem 4. There exists a function f such that every (r,∆, d)-minor of a planar graph is
contained in J � P �Kf(r,∆,d) for some graph J with tw(J) 6 15086399 and some path P .

Theorem 4 implies a constant-treewidth product structure for other graph classes like
δ-string graphs or k-fan-bundle graphs (we refer the reader to [11] for the definitions of
these classes).

While it was easy to see that Theorem 4 implies Theorems 1 and 2, it is less obvious
why Lemma 3 implies Theorem 4. The main idea behind this implication is captured by
the following lemma.

Lemma 5. There exists a function g such that for any r, ∆, d with r > 224, ∆ > 0 and
d > 1, every (r,∆, d)-minor of a planar graph is an (r − 1,∆′, d′)-minor of some planar
graph for some d′,∆′ ∈ {1, . . . , g(∆, d)}.

Proof. Let f be the function from Lemma 3, and set g(∆, d) = max{d,∆} · f(d∆). Let G
be a planar graph, let G′ be an (r,∆, d)-minor of G, and let ((Bx, vx) : x ∈ V (G′)) be an
(r,∆, d)-model of G′ in G. Let G0 = ⋃

x∈V (G′) Bx − vx. Note that G0 is a subgraph of G of
maximum degree at most d∆. Let R be a 222-blocking partition of G0 of width at most
f(d∆), and let us define R′ = R∪ {{v} : v ∈ V (G) \ V (G0)}. Let H denote the quotient
G/R′, i.e., let H be a graph on R′ where two distinct parts are adjacent if G contains an
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edge with ends in these two parts. Since G is planar and each part of R′ is connected, H
is a minor of G, and thus a planar graph. Let d′ = df(d∆), and let ∆′ = ∆f(d∆). Since
the width of R is at most f(d∆), each part of R has degree at most ∆′ in H. Hence, G′
is an (r,∆′, d′)-minor of H with a corresponding (r,∆′, d′)-model ((B′x, v′x) : x ∈ V (G′)) in
H defined as follows. For each x ∈ V (H), let v′x be the part of R′ containing vx, and let
B′x be the “projection” of Bx on G′, so that the vertices of B′x are those parts of R′ which
contain at least one vertex of Bx, and two parts are adjacent in B′x if Bx contains an edge
with ends in those parts.

We claim that ((B′x, v′x) : x ∈ V (G′)) is actually an (r − 1,∆′, d′)-model. To show that,
we need to prove that for any x ∈ V (G′) and u′ ∈ V (B′x), the distance between v′x and u′
in B′x is at most r − 1. Let u be a vertex of Bx which belongs to the part u′ of R′. Let
u0 · · ·us be a shortest path in Bx with u0 = vx and us = u. Since ((Bx, vx) : x ∈ V (G′))
is an (r,∆, d)-model, we have s 6 r. For each i ∈ {0, . . . , s}, let u′i be the part of R′
containing ui. Hence, u′0 = v′x, u′s = u′, and for each i ∈ {0, . . . , s− 1}, either u′i = u′i+1 or
u′iu
′
i+1 ∈ E(H). Therefore, the distance between v′x and u′ is at most s, and thus at most

r. Suppose towards a contradiction that this distance is exactly r. Hence, s = r, and the
vertices u′0, . . . , u′r are pairwise distinct parts of R′. Therefore, u1, . . . , ur is a path in G0,
with no two vertices in one part of R. As r > 224, the length of this path is at least 223,
which contradicts R being 222-blocking. This proves that G′ is an (r − 1,∆′, d′)-minor of
H.

The proof of Theorem 4 uses Lemma 5 and the following result by Hickingbotham and
Wood [11].
Theorem 6 ([11]). If a graph G is an r-shallow minor of H � P �Kd where tw(H) 6 t,
then G is contained in J � P �Kd(2r+1)2 for some graph J with tw(J) 6

(
2r+1+t

t

)
− 1.

Proof of Theorem 4. Let g be the function from Lemma 5. We may assume that g(∆, d) 6
g(∆′, d′) whenever ∆ 6 ∆′ and d 6 d′. Define f(r,∆, d) recursively:

f(r,∆, d) =

3d(2r + 1)2 if r 6 223,
f(r − 1, g(∆, d), g(∆, d)) if r > 224.

We show that this function satisfies the theorem by induction on r. Let G be a planar
graph, and let G′ be an (r,∆, d)-minor of G. For the base case, suppose that r 6 223.
By the product structure theorem for planar graphs, G is contained in H � P �K3 for
some graph H with tw(H) 6 3 and some path P . Hence, G′ is an r-shallow minor of
H � P �K3d. By Theorem 6, G′ is contained in J � P �K3d(2r+1)2 for some graph J with
tw(J) 6

(
2r+1+3

3

)
− 1 6

(
450
3

)
− 1 = 15086399.

For the induction step, suppose that r > 224. By Lemma 5, there exist a planar
graph H and d′,∆′ ∈ {1, . . . , g(∆, d)} such that G′ is an (r − 1,∆′, d′)-minor of H. By
the induction hypothesis, there exists a graph J with tw(J) 6 15086399 such that G′
is contained in J � P � Kf(r−1,∆′,d′). Since d′ 6 g(∆, d) and ∆′ 6 g(∆, d), we have
f(r − 1,∆′, d′) 6 f(r,∆, d), and therefore G′ is contained in J � P � Kf(r,∆,d). This
completes the proof.
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