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Abstract

We give a characterization of when a signed graph G with a pair of distinguished
edges e1, e2 ∈ E(G) has the property that all cycles containing both e1 and e2 have
the same sign. This answers a question of Zaslavsky.
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1 Introduction
Throughout we assume (signed) graphs to be finite and loopless (loops add nothing to the
problem under consideration), but we permit parallel edges. A signed graph is a triple
G = (V,E, σ) where (V,E) is a graph and σ : E → {−1, 1} is a signature. We say that the
sign of a cycle C ⊆ G is positive (negative) if σ(C) =

∏
e∈E(C) σ(e) is equal to 1 (−1). If

all cycles of G are positive, then we call G balanced and otherwise we call G unbalanced.
In a 2-connected signed graph G, a single edge e appears in cycles of both signs if and

only if G − e is unbalanced. For the “only if” direction, let C1, C2 be cycles of opposite
sign containing e and note that the symmetric difference of E(C1) and E(C2) is a set of
edges with negative sign and even degree at every vertex (which can thus be expressed as
a disjoint union of edge sets of cycles). For the “if” direction, let e = uv, choose a negative
cycle C in G − e, and apply Menger to choose two vertex disjoint paths from {u, v} to
V (C); these two paths together with C and e contain the desired cycles.
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Our objective in this article is to extend this simple property to a pair of edges. If G
is a signed graph and e1, e2 ∈ E(G), then we say that e1 and e2 are untied if there exist
cycles containing e1 and e2 of both positive and negative sign, and otherwise we say that
e1 and e2 are tied. Our main result is as follows.

Theorem 1.1. Let G be a 3-connected signed graph and let e1, e2 ∈ E(G) be distinct and
not in parallel with any other edges. Then e1 and e2 are tied in G if and only if one of the
following holds:

1. There exists a parallel class F containing edges of both signs so that F+ = F ∪{e1, e2}
is an edge-cut and G− F+ is balanced,

2. e1, e2 are incident with a common vertex v and G− v is balanced,

3. G− {e1, e2} is balanced.

In Section 2, we provide a reduction that allows us to determine the structure of arbi-
trary signed graphs that are tied, meaning this result implies a full characterization of when
all cycles through two given edges of a signed graph have the same sign. This problem was
explicitly asked by Zaslavsky in [13, E2], but let us remark that our motivation for this
work is a forthcoming application of these results in the setting of nowhere-zero flows on
signed graphs, towards Bouchet’s conjecture that every flow-admissible signed graph has
a nowhere-zero 6-flow [1]. We apply the results here while finding a decomposition of the
edges of a 3-connected signed graph similar to Seymour’s decomposition in the first proof
of his 6-Flow Theorem [9].

Theorem 1.1 may be viewed as a signed graph generalization of the following result
from Lovász’s problem book [8, 6.67]. By replacing the edge e3 of Theorem 1.2 with two
parallel edges, one of each sign, forming a signed graph with exactly one negative edge,
one observes that Theorem 1.1 does indeed imply Theorem 1.2.

Theorem 1.2. [Lovász] Let G be a simple 3-connected graph and e1, e2, e3 ∈ E(G) be
distinct. Then there is no cycle containing e1, e2, e3 if and only if one of the following
holds:

1. G− {e1, e2, e3} is disconnected,

2. e1, e3, e3 are incident with a common vertex.

Another generalization of Theorem 1.2 is the following conjecture by Lovász [7] and
Woodall [12] (independently): If G is a k-connected graph, and S ⊆ E(G) a set of k
independent edges so that either k is even or G − S is connected, then there is a cycle
C ⊆ G with S ⊆ E(C). Kawarabayashi [4] showed that S is always contained in either
one cycle or two vertex-disjoint cycles. And Thomassen and Häggkvist [3] showed that
the conjecture holds if one assumes G is (k + 1)-connected. The following well-known
conjecture of Lovász also concerns connectivity, paths and cycles.
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Conjecture 1.3. [Lovász] For any natural number k, there exists a least natural number
f(k) so that for any f(k)-connected graph G and any x, y ∈ V (G) there exists an induced
xy-path P so that G− V (P ) is k-connected.

The above conjecture also has a natural generalization to signed graphs that we state
below. To deduce 1.3 from 1.4, simply add a single negative edge xy to the graph (treat
all other edges as positive).

Conjecture 1.4. For any natural number k, there exists a least natural number f ′(k) so
that for any f ′(k)-connected, unbalanced, signed graph G there exists an induced negative
cycle C so that G− V (C) is k-connected.

Concerning the two conjectures above, Tutte [10] proved the simplest of these cases,
that f(1) = f ′(1) = 3. Using Tutte’s language, a cycle C in a graph G is peripheral if C
is induced and G − V (C) is connected. Tutte showed that every 3-connected graph has
a peripheral cycle through any given edge, so f(1) = 3. Moreover, he proves that the
peripheral cycles generate the cycle space. That is to say that the peripheral cycles are not
contained in any codimension 1 subspace of the cycle space. It follows that every signed
graph with a non-trivial signature has a negative peripheral cycle, and f ′(1) = 3. Kriesell
[6] and independently Chen Gould and Yu [2] show that f(2) = 5.

And so we have provided two examples of interesting statements about graphs which
have a natural and more general interpretation in the setting of signed graphs.

2 Outline of the Proof

2.1 Reduction to 3-connected

A k-separation of a graph G is a pair of subgraphs (G1, G2) so that E(G1) ∩ E(G2) = ∅,
E(G1) ∪ E(G2) = E(G), and |V (G1) ∩ V (G2)| = k. We say that the separation is proper
if V (G1) \ V (G2) 6= ∅ 6= V (G2) \ V (G1).

Observation 2.1. Let G be a 2-connected signed graph, let e1, e2 ∈ E(G), and let (G1, G2)
be a 2-separation of G with V (G1) ∩ V (G2) = {u, v}. For i = 1, 2 let G+

i be obtained from
Gi by adding a positive edge fi with ends u, v.

1. If ei ∈ E(Gi) for i = 1, 2 then e1 and e2 are tied in G if and only if ei and fi are tied
in G+

i for i = 1, 2.

2. If e1, e2 ∈ E(G1) and every edge in E(G2) is positive, then e1 and e2 are tied in G if
and only if they are tied in G+

1 .

3. If e1, e2 ∈ E(G1) and G2 is unbalanced, then e1 and e2 are tied in G if and only if
they are tied in the graph obtained from G+

1 by adding a negative edge f ′1 in parallel
with f1.
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The above observation allows us to reduce the problem of two edges being tied to one
on smaller graphs. Continuing in this manner, we may reduce the problem to the setting
of 3-connected signed graphs. Since the concept of edges e1, e2 being tied is vacuous if e1
and e2 are in separate blocks, Theorem 1.1 gives a complete answer. All of the steps in our
reduction are reversible, so we can turn this around and provide a generic construction of
signed graphs where two given edges are tied by taking the three types given in the above
theorem and combining them as in the observation. The possible structures of all such
graphs can readily be determined but we found no better way of describing them than by
way of the decompositions presented here.

2.2 Some forbidden minors in tied signed graphs

In the setting of signed graphs we are principally focused on the signs of cycles and not
those of edges. Accordingly, two signatures σ, σ′ of a signed graph G are equivalent if every
cycle C ⊆ G satisfies σ(C) = σ′(C). Two signatures are equivalent if and only if one can
be obtained from the other by a switch, which is changing the sign of every edge in some
edge-cut.

Let G = (V,E, σ) be a signed graph and let e ∈ E (v ∈ V ). To delete the edge e
(vertex v) we remove this edge (vertex and all incident edges) from the graph and adjust
the domain of σ accordingly. To contract the edge e, first modify σ by switching on an
edge-cut (if necessary) so that σ(e) = 1, and then modify the graph by contracting e and
removing e from the domain of σ. If H is a signed graph obtained from G by a (possibly
empty) sequence of edge and vertex deletions and edge contractions, we call H a minor of
G. Note that whenever C ⊆ H is a cycle, there is a corresponding cycle C∗ ⊆ G containing
all edges in C and having the same sign as C. In particular, this implies the following key
property.

Observation 2.2. Let H be a minor of the signed graph G. If e1, e2 are untied edges of
H, then they are also untied in G.

We introduce three families of signed graphs: hat, target, and hedgehog, each of which
has a distinguished cycle C that is negative together with distinguished edges e1, e2. The
edges e1 and e2 are untied in all. The heart of our argument is to show that if our graph is
not one of the named counterexamples to Theorem 1.1, then it contains a hat, target, or
hedgehog graph as a minor.

C

C

C

e1 e1
e1

e2

e2

e2

Hat Target Hedgehog
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2.3 The main lemma and proof of main result

Our arguments lean on working with a carefully chosen negative cycle C in the graph. For
this purpose we adopt Tutte’s notation. Let G be a graph and let H ⊆ G. A bridge of H
is a subgraph of G−E(H) of one of the two forms: a single edge uv (and its ends) where
u, v ∈ V (H) and uv 6∈ E(H), or a component F of G− V (H) together with all edges of G
with exactly one end in V (F ).

Lemma 2.3. Let G = (V,E, σ) be a simple, signed, 3-connected graph, and let e1, e2 ∈
E(G) be nonadjacent. If there exists a negative cycle in G − {e1, e2}, then e1 and e2 are
untied.

Proof sketch. Suppose for contradiction the lemma is false, and let G be a counterexample
so that |V | is minimum. Choose a negative cycle C ⊆ G−{e1, e2} subject to the following
constraints: Both e1 and e2 are in the same bridge of C if possible, subject to this the
bridge of C containing e1 is maximum, subject to this the bridge of C containing e2 is
maximum, and subject to this the lexicographic ordering of the sizes of the other bridges
is maximized. The proof proceeds by establishing the following four claims, whose proofs
are omitted. They involve either a rerouting which contradicts the choice of C, or finding
one of the minors in Section 2.2.

(1) Every bridge of C must contain e1 or e2.
(2) No bridge contains e1 and e2.
(3) e1 is not incident with a vertex of C.
(4) |V (C)| ≥ 4.

With this lemma in hand, we prove the main result.

Proof sketch of Theorem 1.1. The “if” direction is straightforward to verify. For the “only
if” direction, first suppose that e1 and e2 are incident with a common vertex u, say ei = uvi
for i = 1, 2. If G−u is not balanced, then it contains a negative cycle that can be extended
to a subgraph with a hat minor. Next, suppose that there exist two parallel edges f, f ′
of opposite sign. If f, f ′ are incident with an end of e1 or e2, then e1, e2 are not tied by
3-connectivity of G. Otherwise, the result follows from Theorem 1.2. This case also follows
from an earlier result of Watkins and Mesner [11].

So we may now assume that G does not contain a negative cycle of length 2, and we
may assume no parallel edges. If G−{e1, e2} is balanced, then we have the third structure
from the theorem statement. Otherwise, it follows from Lemma 2.3 that e1 and e2 are not
tied in G, and this completes the proof.

References
[1] A. Bouchet. Nowhere-zero integral flows on a bidirected graph. J. Combin. Theory

Ser. B, 34(3):279–292, 1983.



Cycles through two edges in signed graphs 354

[2] Guantao Chen, Ronald J. Gould, and XingXing Yu. Graph connectivity after path
removal. Combinatorica (Budapest. 1981), 23(2):185–203, 2003.

[3] Roland Häggkvist and Carsten Thomassen. Circuits through specified edges. Discrete
mathematics, 41(1):29–34, 1982.

[4] Kenichi Kawarabayashi. One or two disjoint circuits cover independent edges:
Lovász–woodall conjecture. Journal of combinatorial theory. Series B, 84(1):1–44,
2002.

[5] Kenichi Kawarabayashi, Orlando Lee, Bruce Reed, and Paul Wollan. A weaker ver-
sion of lovász’ path removal conjecture. Journal of combinatorial theory. Series B,
98(5):972–979, 2008.

[6] Matthias Kriesell. Induced paths in 5-connected graphs. Journal of graph theory,
36(1):52–58, 2001.

[7] László Lovász. Problem 5. Period. Math. Hungar, 4:82, 1974.

[8] László Lovász. Combinatorial problems and exercises. North-Holland, 2nd ed. edition,
1993.

[9] P.D Seymour. Nowhere-zero 6-flows. Journal of combinatorial theory. Series B,
30(2):130–135, 1981.

[10] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
s3-13(1):743–767, 1963.

[11] M.E. Watkins and D.M. Mesner. Cycles and connectivity in graphs. Canadian Journal
of Mathematics, 19:1319–1328, 1967.

[12] D.R Woodall. Circuits containing specified edges. Journal of combinatorial theory.
Series B, 22(3):274–278, 1977.

[13] Thomas Zaslavsky. Negative circles in signed graphs: A problem collection. Electronic
notes in discrete mathematics, 63:41–47, 2017.


	Introduction
	Outline of the Proof
	Reduction to 3-connected
	Some forbidden minors in tied signed graphs
	The main lemma and proof of main result


