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Abstract

We consider a synchronous process of particles moving on the vertices of a graphG,
introduced by Cooper, McDowell, Radzik, Rivera and Shiraga (2018). Initially, M
particles are placed on one vertex of G. At the beginning of each time step, for every
vertex inhabited by at least two particles, each of these particles moves independently
to a neighbour chosen uniformly at random. The process ends at the first step when
no vertex is inhabited by more than one particle.

Cooper et al. showed that when the underlying graph is the complete graph on n
vertices, then there is a phase transition when the number of particles M = n/2.
They showed that if M < (1 − ε)n/2 for some fixed ε > 0, then the process finishes
in a logarithmic number of steps, while if M > (1 + ε)n/2, an exponential number of
steps are required with high probability. In this paper we provide a thorough analysis
of the distribution of the dispersion time in the barely critical regime, where ε = o(1),
and describe the fine details of the transition between logarithmic and exponential
time. As a consequence of our results we establish, for example, that the dispersion
time is in probability and in expectation Θ(n1/2) when |ε| = O(n−1/2), and provide
qualitative bounds for its tail behavior.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-046

1 Introduction
We consider the synchronous dispersion process introduced by Cooper, McDowell, Radzik,
Rivera and Shiraga [1]. The process evolves in discrete time. It involves particles that
move between vertices of a given graph G. A particle is called happy, if there are no other
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particles on the same vertex, otherwise it is unhappy. Initially, M particles are placed on
some vertex of G. In every (discrete) time step, all unhappy particles move simultaneously
and independently to a neighbouring vertex selected uniformly at random. Happy particles
do not move. The process terminates at the first time at which all particles are happy.
This (random) time is denoted by TG,M and it is called the dispersion time; it constitutes
the main object of interest here.

In [1] the authors studied this process on several graphs, and established results con-
cerning TG,M and the dispersion distance, which is the maximum distance of any particle
from the origin at dispersion (that is, at step TG,M). One of the main focus in [1] is the be-
haviour when the underlying graph is the complete graph with loops, which we will denote
by Kn. The most general results come from considering a lazy variant of the dispersion
process, which was shown to disperse more particles in a smaller number of steps. More
precisely, in this lazy version any unhappy particle moves with probability q ∈ (0, 1] and
stays at its current location with probability 1− q.

The main result of [1] regarding TKn,M is that there are constants c, C > 0 such that if
M = (1− q/2− α)n for any α > 0 that may depend on n, then

TKn,M ≤ C(qα)−1 log(n) with probability at least 1−O(1/n), (1)

whereas when M = n(1− q/2 + α), then

TKn,M ≥ ecnq
2α3

with probability at least 1− e−cnq2α3

. (2)

The above statements leave several questions open. Indeed, corresponding bounds for the
lower and upper tails of TKn,M were not provided. It is not clear, moreover, what the actual
behavior is when M is close to n/2, that is, when M = (1 + ε)n/2 for some |ε| = o(1)
and how the transition from logarithmic to exponential time quantitatively looks like. For
example, (2) is not informative when q = 1 and α = o(n−1/3), as it essentially only states
that the number of steps is at least one.

Since we deal exclusively with the complete graph, in the following we will write Tn,M =
TKn,M . Our main contribution is a thorough and precise analysis of the dispersion process
when, as above, we assume that M = (1 + ε)n/2 and |ε| = o(1). Then we establish that
the process exhibits three qualitatively different behaviours based on the asymptotics of ε,
where, informally speaking, Tn,M smoothly changes from |ε|−1 log(ε2n) to n1/2 and then to
ε−1eΘ(ε2n); in particular, Tn,M = Θ(n1/2) for M = n/2. We begin with providing the upper
bounds on the distribution of Tn,M .

Theorem 1.1. There is a C > 0 such that the following is true for sufficiently large n and
all A ≥ 1. Let ε = o(1) and M = (1 + ε)n/2. If ε < −en−1/2, then

P
(
Tn,M > AC|ε|−1 log(ε2n)

)
≤ e−(A−1).

Moreover, if |ε| ≤ en−1/2, then

P
(
Tn,M > ACn1/2

)
≤ e−(A−1).
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Finally, if ε > en−1/2, then

P
(
Tn,M > Aε−1eCε

2n
)
≤ e−(A−1).

The next main result establishes lower bounds for these ranges as well. When ε ≤ en−1/2

these match, and in the last case we show that the exponential term is of the same order.

Theorem 1.2. There is a c > 0 such that the following is true for sufficiently large n and
all A ≥ 1. Let |ε| = o(1) and M = (1 + ε)n/2. If ε < −en−1/2, then

P
(
Tn,M ≤ c|ε|−1 log(ε2n)/A

)
≤ A−1.

Moreover, if |ε| ≤ en−1/2, then

P
(
Tn,M ≤ cn1/2/A

)
≤ A−1.

Finally, if ε > en−1/2, then

P
(
Tn,M ≤ max{ecε2n, cε−1/A}

)
≤ min{e−cε2n, A−1}.

Let us discuss briefly some consequences of our results. First of all, the two theorems
combined imply that in probability

Tn,M = Θ(|ε|−1 log(ε2n)) if ε < −en−1/2,

and
Tn,M = Θ(n1/2) if |ε| = O(n−1/2).

In particular, when M = n/2 we obtain that Tn,M = Θ(n1/2) in probability. For larger ε,
we obtain the slightly weaker uniform estimate that in probability

log(Tn,M) = Θ(ε2n+ log n) if ε = ω(n−1/2).

This estimate can be improved as soon as ecε2n ≥ ε−1, that is, when ε = Ω((log n/n)1/2);
after this point the maximum in Theorem 1.2 will be ecε2n and so, in fact, for such ε we
obtain that even log(Tn,M) = Θ(ε2n) in probability.

Apart from these estimates we can also use our main theorems to obtain information
about, for example, the expectation of Tn,M . In particular, Theorem 1.1 guarantees that
Tn,M has an exponential(-ly thin) upper tail and so Tn,M is integrable; we readily obtain
that

E[Tn,M ] = Θ(|ε|−1 log(ε2n)) if ε ≤ −en−1/2, E[Tn,M ] = Θ(n1/2) if |ε| = O(n−1/2),

and
logE[Tn,M ] = Θ(ε2n+ log n) if ε = ω(n−1/2).
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Further Related work The dispersion process was also studied by Frieze and Peg-
den [3], who sharpened the result on the dispersion distance on L∞, which denotes the
infinite line. In particular, it was shown in [1] that with high probability, the dispersion
distance on L∞ for n particles is O(n log n); in [3] the logarithmic factor was eliminated. A
similar setup was considered by Shang [8], where the author studied the dispersion distance
in a non-uniform dispersion process in which an unhappy particle moves at the next time
step to the right with probability pn and to the left with probability 1− pn, independently
of other particles.

Processes where particles move on the vertices of a graph have been widely studied
over the past decades; we refer the reader to [1] for references. Concerning processes whose
scope is to disperse particles on a discrete structure, arguably the best known such model
is the Internal Diffusion Limited Aggregation (IDLA, for short); see [2] and [4]. In this
model, particles sequentially start (one at a time) from a specific vertex designated as the
origin. Each particle moves randomly until it finds an unoccupied vertex; then it occupies
it forever (meaning that it does not move at subsequent process steps). When a particle
stops, the next particle starts moving. We emphasize that whenever a particle jumps to
an occupied vertex, it just keeps moving without activating the occupant particle. In the
dispersion process, on the other hand, when a (happy) particle standing alone on a node
is reached by another particle, it is reactivated and keeps moving until it becomes happy
again.

2 Proof Ideas
In the proof we begin with studying the expected change in the number of unhappy particles
in every step. Let us write Ht and Ut for the number of happy and unhappy particles at
the beginning of step t; in particular, U0 = M and H0 = 0 and Ut +Ht = M for all t ∈ N0.
Then it turns out that

E [Ut+1|Ut] = Ht

(
1−

(
1− 1

n

)Ut
)

+ Ut

(
1− n−Ht

n

(
1− 1

n

)Ut−1
)
, t ∈ N0. (3)

The two summands correspond to the number of particles counted in Ht that become
unhappy and to the number of particles counted in Ut that remain unhappy in step t+ 1.
Recall that we write M = (1 + ε)n/2 and assume that Ut is not too big, say Ut ≤ δn for
some small δ > 0. Then a quick calculation reveals that

E [Ut+1|Ut] = (1 + ε)Ut −Θ(U2
t /n). (4)

So, as long as Ut is (much) larger than |ε|n, then Ut+1 will be (much) smaller than Ut
in expectation. In other words, when there are ‘many’ unhappy particles, the expected
number of unhappy particles in the next step decreases significantly. However, this is no
longer the case when there are only a ‘few’ unhappy particles, that is, less than O(|ε|n).
In this case the number of unhappy particles is expected to either decrease only by a slight
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amount, which in particular is problematic when the expected decrease E[Ut+1 − Ut|Ut] is
smaller than one, or when ε > 0, where we can expect that the number of unhappy particles
even increases. We will use different methods to analyse the trajectory of Ut depending on
the range of ε and whether we are considering an upper or a lower bound. In particular,
when |ε| is not too large we will see that we can compare the situation to a very slightly
biased random walk, and so we will end up with an n1/2 term, while in the other cases our
walk will have a positive/negative drift and the exponential/logarithmic term will emerge.

2.1 Upper tail

Our approach for establishing Theorem 1.1 is to find a lower bound on the probability that
when starting with an arbitrary number of unhappy particles, the process will stop within
a certain number of steps. By splitting the time interval under consideration into a disjoint
union of smaller intervals and using the Markov property of the process, we can apply the
above bound repeatedly on these smaller sections to achieve an exponentially decreasing
upper bound on the probability that the process is still not finished.

When there are many unhappy particles we use drift analysis to analyse the process; we
refer the reader to [5] for an excellent introduction and description of the method. Roughly
speaking, drift analysis provides an estimate for the expected duration of a homogeneous
Markov-process over a discrete state space, when the expected value of the conditional
one step change is known for every element in the state space. With (4) at hand we can
apply the method to deduce bounds for the probability that dispersion leaves us with many
unhappy particles after a certain number of steps.

Once there are only a few unhappy particles left we change our approach. After this
point we bound from above the number of unhappy particle with another random pro-
cess, which we call the binomial process. More specifically, beginning with some initial
value B0, we define a random process by setting Bt+1 = 2Bin(Bt,M/n), t ∈ N0. The
quantity Bt provides an upper bound for the number of unhappy particles after t steps, as
the probability that an unhappy particle lands on the same vertex as any other particle is
at most M/n, and in that case we account for two unhappy particles. As the number of
unhappy particles is small, it is rare for two unhappy particles to land on the same vertex,
making this coupling relatively tight.

The binomial process is equivalent to B0 independent copies of a Galton-Watson branch-
ing process that have no offspring with probability 1−M/n and two offspring with prob-
ability M/n. A simple inductive argument implies that the size of the k-th generation of
these B0 branching processes has the same distribution as Bk.

In the next step we estimate the probability that a single copy of the branching process
survives for at least k generations; denote this probability by xk. Then x0 = 1 and moreover

xk+1 =
M

n

(
2xk − x2

k

)
,

as in order for the branching process to survive for k+ 1 generations, the root has to have
2 children, and at least one of these children has to survive for at least k generations.
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Recall the well-known property concerning the survival probability of a Galton-Watson
branching process, namely that it is 0 if the expected number of offspring is at most 1,
and it is bounded away from 0 when the expected offspring is larger than 1 (see e.g. [7]).
Clearly xk tends to the survival probability as k →∞, and moreover, limk→∞ xk = o(1) as
n→∞, as the expected number of children is ∼ 1.

So far we have referred to many and few unhappy particles, without mentioning the
level where the change occurs. The exact value is determined by carefully balancing several
properties. For the branching process argument, we would like that the number of steps
is such that xk is sufficiently close to its limit. In addition we would like the number of
steps that we study using the branching process to match the number of steps we analyse
using drift analysis, so as to reach an optimal bound. This leads to two different regimes,
namely

• roughly n1/2 steps, when |ε| ≤ en−1/2;

• roughly |ε|−1 steps, when |ε| > en−1/2,

which coincide with the three regimes in the main theorem.
The branching process behaves similarly in all regimes, as the survival probability is

o(1). However, the rate of convergence in n becomes slower as ε increases and thus the
probability that all independent copies of this branching process die out (in the required
number of steps) goes from almost certain, when ε < en−1/2 to a constant when |ε| ≤
en−1/2, to exponentially decreasing when ε > en−1/2. Recall that we use these probabilities
as the basis of a geometric distribution, which leads to the upper bounds in Theorem 1.1.

2.2 Lower tail

Now we consider the lower bound. In this case we first show that we can mostly ignore
what happens when the number of unhappy particles is large, the only exception is that we
have to ensure that it is unlikely that most of the unhappy particles become happy in any
single step. In order to achieve this, note that Ut+1 is a function of Ut and the vertices to
which the unhappy particles counted in Ut jump to. Then we consider the Doob martingale
induced by exposing the individual destinations (of the unhappy particles) one at a time
and show concentration around its expectation with Azuma-Hoeffding, which yields the
desired property that the number of unhappy particles does not decrease too quickly.

Having established this, we proceed similarly to the analysis for the upper tail. Let
B′0 ∈ N and consider the binomial process with different parameters defined by

B′t+1 = 2Bin(B′t, (M − 2K)/n), t ∈ N,

where K ∈ N is arbitrary but fixed. Then, as long as Ut ≤ K, we have that B′t is a
lower coupling for Ut, as there are at least M − 2K happy particles at the end of the
corresponding step. We can analyse the binomial process using branching processes as
for the upper bound, providing a lower bound with the right order of magnitude when
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ε ≤ en−1/2. However, when ε > en−1/2, due to the −2K term the associated branching
process becomes subcritical, and hence we are only able to show that the process still runs
after Ω(ε−1) steps, which provides the corresponding term in the max in Theorem 1.2.

In order to obtain the term involving the exponential in ε2n, we use an alternative
approach, adapting the argument of Theorem 2.6 in Lengler and Steger [6]. Note that
this term only appears when ε > en−1/2, thereby whenever Ut is small, (4) indicates that
in the following step Ut will increase in expectation. In such a case it is unlikely that Ut
decreases, and consequently many steps are required before the prcess stops.
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