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Abstract

For k ≥ 3, call a k-tuple (d1, d2, . . . , dk) with d1 ≥ d2 ≥ · · · ≥ dk > 0 and∑k
i=1 di = 1 a Ramsey k-tuple if the following is true: in every two-colouring of the

circle of unit perimeter, there is a monochromatic k-tuple of points in which the
distances of cyclically consecutive points, measured along the arcs, are d1, d2, . . . , dk
in some order. By a conjecture of Stromquist, if di = 2k−i

2k−1 , then (d1, . . . , dk) is
Ramsey.

Our main result is a proof of the converse of this conjecture. That is, we show that
if (d1, . . . , dk) is Ramsey, then di = 2k−i

2k−1 . We do this by finding connections of the
problem to certain questions from number theory about partitioning N into so-called
Beatty sequences. We also disprove a majority version of Stromquist’s conjecture,
study a robust version, and discuss a discrete version.
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1 Introduction
In the May 2021 issue of the American Mathematical Monthly, Robert Tauraso posed the
following problem [13]: If all the points of the plane are arbitrarily coloured blue or red,
find an acute pentagon with all vertices the same colour and with prescribed area 1. A
beautiful solution was suggested by Walter Stromquist, which reduced the question to a
Ramsey-type problem, interesting on its own right.

Consider 31 points evenly spaced on a circle, and colour each of them arbitrarily blue or
red. Then we can always find 5 points with the same colour that divide the circle into arcs
proportional to 1:2:4:8:16. (The arcs need not be in the order suggested by the proportion.
That is, 1:4:16:2:8 counts as a success.) Notice that no matter in what order 5 points divide
the circle into such arcs, their convex hull is a pentagon of the same area. Thus, all we
have to do is to start with a circle for which this area is 1. Stromquist managed to verify
the above statement by computer, and he formulated the following attractive conjecture.

Conjecture 1.1 (Stromquist’s conjecture). For any k ≥ 3, consider 2k − 1 points evenly
spaced on a circle, and colour each of them arbitrarily blue or red.

Then we can always find k points with the same colour that divide the circle into arcs
proportional to 1 : 2 : 4 : . . . : 2k−1, but not necessarily in this order.

The case k = 3 was settled a long time ago by Bialostocki and Nielsen [4], and it is not
hard to verify the case k = 4 either. Stromquist kindly informed us that he was able to
give a computer assisted proof for k ≤ 6.

In the present note, we study Stromquist’s conjecture. To simplify the presentation, we
introduce some notation. For k ≥ 3, let d = (d1, d2, . . . , dk) be a k-tuple with d1 ≥ d2 ≥
· · · ≥ dk > 0 and

∑k
i=1 di = 1. In a two-colouring of the circle S of unit perimeter, we

call a k-tuple (p1, p2, . . . , pk) of points from S monochromatic if the colour of every point
pi is the same. The main problem we study is whether for a given d it is true that in
every two-colouring of S we can find a monochromatic k-tuple in which the distances of
consecutive points, measured along the arcs, are exactly d1, . . . , dk in some order. We call
a k-tuple d with this property a Ramsey k-tuple, or simply Ramsey.

A permuted copy of a k-gon inscribed in S is another k-gon inscribed in S with the
same side lengths, but in a possibly different order. If the side lengths of the k-gon,
measured along the arcs, are d1, . . . , dk, we also call a monochromatic permuted copy of
the k-gon a monochromatic permuted copy, or simply a monochromatic copy, of the k-tuple
d = (d1, d2, . . . , dk).

Using this terminology, Stromquist’s conjecture is equivalent to that if k ≥ 3, and
di =

2k−i

2k−1 for every 1 ≤ i ≤ k, then d = (d1, . . . , dk) is Ramsey. Our main result is proving
the converse of the conjecture. That is, we prove that other k tuples are not Ramsey.

Theorem 1.2. If d = (d1, . . . , dk) is Ramsey, then di = 2k−i

2k−1 .

We call the k-tuple d = (d1, . . . , dk) with di = 2k−i

2k−1 the (k, 2)-power. To prove Theo-
rem 1.2, for every k-tuple d that is not the (k, 2)-power, we construct a two-colouring of
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S that does not contain a monochromatic copy of d. In fact, we show that for any other
tuple d there exists a t ∈ N, for which the colouring that consists of 2t arcs of equal length,
coloured alternating red and blue, does not contain a monochromatic copy of d. Theorem
1.2 is an immediate corollary of the following lemma, proved in Section 2.

Lemma 1.3. Let ct be a uniform colouring of S obtained by dividing it into 2t equal
circular arcs, and colouring them alternating the two colours. If for every t ∈ N the
uniform colouring ct contains a monochromatic copy of d = (d1, . . . , dk), then di = 2k−i

2k−1 .

Our proof proceeds by establishing a connection to a conjecture of Fraenkel about
Beatty sequences, and solving a special case of it, which may be of independent interest.

A Beatty sequence is a sequence of the form {bαn + βc}∞n=1 for some α, β ∈ R. The
term Beatty sequence was first used by Connell [5], after a problem proposed by Beatty [3].
Let α = (α1, . . . , αk) with 0 < α1 ≤ · · · ≤ αk and β = (β1, . . . , βk) be two k-tuples of real
numbers. We say that the pair (α, β) partitions N, if the Beatty sequences {bαin+βic}∞n=1

partition N.
Finding a characterisation of those pairs (α, β) which partition N is a well-studied

problem, which has connections to a combinatorial game, called Wythoff’s game, see for
example [5, 6, 7, 8, 9, 15]. For k = 2, the characterisation is well understood [8, 11].
Fraenkel [8] noted that for k ≥ 3 and for α = (α1, . . . , αk) with αi = 2k−1

2k−i for every
1 ≤ i ≤ k, there is a β such that (α, β) partitions N. According to Erdős and Graham,1
Freankel made the following conjecture.

Conjecture 1.4 (Fraenkel’s conjecture). If for α = (α1, . . . , αk) with k ≥ 3 and 0 < α1 <

· · · < αk the pair (α, β) partitions N, then αi = 2k−1
2i−1 for 1 ≤ i ≤ k.

Conjecture 1.4 is confirmed for k ≤ 7 [1, 2, 10, 16, 14], and is open for k ≥ 8. To prove
Theorem 1.2, we prove Fraenkel’s conjecture in a special case.

Theorem 1.5. If αi = βi
2
for every 1 ≤ i ≤ k, and (α, β) partitions N, then αi = 2k−1

2k−i for
every 1 ≤ i ≤ k.

We omit the details of the proof of Theorem 1.5 here, due to space restrictions.
In most of our proofs about Ramsey k-tuples, we work with a discrete version of the

problem. We can do so because if there is an i for which di∑
j dj

is irrational, then it is
easy to show that d is not Ramsey. Indeed, we can to two-colour the points of S with no
monochromatic pair of points at a given irrational distance apart.

Assuming
∑

i di = 1 and that every di is rational, then writing di = pi
qi
for every 1 ≤ i ≤

k, for N = lcm(q1, . . . , qk) the problem is equivalent to deciding if in any two-colouring of
the vertices of a regular N -gon inscribed in S, we can find a monochromatic copy of d. In
other words, the problem is equivalent to deciding if in every two-colouring of ZN we can
find a monochromatic k-tuple in which the differences of cyclically consecutive elements

1This appears at [6, page 19] but the there cited paper [8] of Fraenkel only states a weaker conjecture,
asserting that there are i, j with i 6= j such that the ratio αi/αj is an integer.
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are N · d1, . . . , N · dk in some order. We find connections between certain transformations
in the discrete version and avoiding monochromatic copies by using uniform colourings in
the original version.

Considering Stromquist’s conjecture, we could not answer the more specific question
whether every uniform two-colouring of S contains a monochromatic copy of the (k, 2)-
power, however, we confirmed this for very large values of k by a computer search. This
more specific question is related to another problem from number theory, which has con-
nections to vector balancing and combinatorial discrepancy; see Conjecture 5.1.

One might assume that if in a two-colouring one colour class is denser than the other,
then it will contain a (k, 2)-power. However, this is false. Let 0 < ε < 1/80, and divide S
into 10 intervals of lengths 1/8−ε, 1/16+ε, 1/8−ε, 1/16+ε, 1/8−ε, 1/16+ε, 1/8−ε, 1/8+
ε, 1/16−ε, 1/8+ε in this order, and colour them alternating red and blue, starting with red.
Then the set of red points has total length 1/2 + 1/16− 5ε > 1/2, but a straight-forward
case analysis shows that there is no red copy of a (k, 2)-power for k ≥ 8.

We also study what happens when instead of a copy of d, we only want to find a copy
ε-close to it. Two k-tuples (p1, . . . , pk) and (p′1, . . . , p

′
k) in S are ε-close if |p1−p′1|, . . . , |pk−

p′k| ≤ ε. A k-tuple of points p = (p1, . . . , pk) in S is an ε-close copy of d if it is ε-close to a
copy of d. We call a k-tuple nearly-Ramsey, if for every ε > 0 in every two-colouring of S
there is a monochromatic ε-close copy of d.

We show the following.

Theorem 1.6. If d1 = 1
2
, or d is (4

7
, 2
7
, 1
7
), (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
), then (d1, d2, d3) is

nearly-Ramsey.

We also conjecture that these are the only nearly-Ramsey triples.

2 Proof of Lemma 1.3
Proof. Assume that for every t the colouring ct contains a monochromatic copy of d. By
symmetry, we may assume that this copy is red. Going around the points corresponding
to this monochromatic copy in some cyclic order, we must jump over each blue interval.
An arc of distance di with red endpoints jumps over btdie blue intervals, where bxe is the
rounding of x to the closest integer. Thus, we must have

∑k
i=1btdie = t for every t ∈ N.

This implies that for every t > 0 we have
∑k

i=1 (btdie − b(t− 1)die) = t− (t− 1) = 1.
On the other hand, btdie − b(t − 1)die is either 0 or 1 for each 1 ≤ i ≤ k. For a fixed

i, we have btdie − b(t − 1)die = 1 exactly when t is in the sequence {b(n + 1
2
) 1
di
c}∞n=1 =

{bn 1
di
+ 1

2di
c}∞n=1. Thus, the sequences {bn 1

di
+ 1

2di
c}∞n=1 must partition N, and Theorem 1.5

implies that di = 2i−1

2k−1 .
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3 Discrete version
Assume that every di is rational,

∑
i di = 1, and write di = pi

qi
, and let N = lcm(q1, . . . , qk).

In ZN a copy of d = (d1, . . . , dk) is a k-tuple in which the distances of cyclically consecutive
elements are N · d1, . . . , N · dk in some order. A colouring of ZN is d-free if it does not
contain any monochromatic copy of (d1, . . . , dk).

Let χ : ZN → {red, blue} be a colouring of ZN and let t ∈ Z∗N be such that gcd(t, N) = 1.
Let χt : ZN → {red, blue} be defined by χt(x) = χ(tx). It is a simple fact that χ is
(d1, . . . , dk)-free if and only if χt is (t · d1, . . . , t · dk)-free.

It follows that finding a two-colouring of the vertices of a regular N -gon inscribed in
S without a monochromatic copy of a triple d = (d1, d2, d3) is equivalent to finding a
colouring of it without a monochromatic copy of dt = (dt1, d

t
2, d

t
3), where dti =

t·N ·di mod N
N

if
(t ·N · d1 mod N) + (t ·N · d2 mod N) + (t ·N · d3 mod N) = N , and dti =

N−(t·N ·di mod N)
N

if (t ·N · d1 mod N) + (t ·N · d2 mod N) + (t ·N · d3 mod N) = 2N .
Notice that if dt1, dt2, dt3 ≤ 1

2
, then colouring a half-arc in S blue, and the other in red,

avoids all monochromatic copies of dt. Thus, if there is a t such that gcd(t, N) = 1 and
dt1, d

t
2, d

t
3 ≤ 1

2
, then d is not Ramsey. The next claim explains how this property is closely

related to avoiding copies by using uniform colourings. Here we omit its proof.

Claim 3.1. If gcd(t, N) = 1, then the uniform colouring ct avoids all monochromatic copies
of d if and only if dt1, dt2, dt3 ≤ 1

2
.

4 Robust version
Theorem 1.6 states that additionally (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
) and any triple with d1 = 1

2

are also nearly-Ramsey. We conjecture that there are no other nearly-Ramsey triples.

Conjecture 4.1. (d1, d2, d3) is nearly-Ramsey if and only if it is (4
7
, 2
7
, 1
7
), (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
),

( 7
12
, 1
4
, 1
6
) or a triple with d1 = 1

2
.

We sketch the proof of Theorem 1.6 and provide some supporting evidence for Conjec-
ture 4.1. We recolour a point p ∈ S with black if there is a red and a blue point in every
neighbourhood of p. If a colouring of S is not monochromatic, then there is at least one
black point. If we can find an ε-close copy of d such that it only has red and black points
(or blue and black), then we can also find a 2ε-close copy of it with only red (or only blue)
points, by slightly moving the black points of the corresponding triple in S.

Proof sketch of Theorem 1.6. The proof for (5
8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
) is by a case anal-

ysis of the possible colourings of a regular 8-gon/12-gon, respectively, with a black point.
For d1 = 1

2
, we show that for every ε > 0 every red-blue colouring contains a monochro-

matic ε-close copy of a given triple (d1, d2, d3) with d1 = 1
2
. We may assume that the

colouring is not monochromatic, otherwise the statement is trivial. Thus, we may assume
the existence of a black point p. Let p′ be the point diametrically opposite to p, and q
and q′ be two other diametrically opposite points, such that any three of the four points
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p, p′, q, q′ form a copy of (d1, d2, d3). By the pigeonhole principle, without loss of generality,
we may assume that at most one of p′, q, q′ is blue. But then the other three points form
a copy of (d1, d2, d3) without a blue point.

Let d = (d1, d2, d3) be a triple that Conjecture 4.1 asserts to be not nearly-Ramsey. We
believe that for any such d, there is a uniform colouring ct as in Lemma 1.3 that contains no
monochromatic ε-close copies of d. We call t ∈ N suitable if ct contains no monochromatic
copies of d, and nearly-suitable, if ct contains no monochromatic ε-close copies of d. In ct
the black points are exactly the endpoints of the intervals. Thus, t is nearly-suitable if and
only if it is suitable and ct avoids copies of d with two points coinciding with endpoints
of the segments. As the distance of any two black points (along the circumference) is a
multiple of 1

2t
, we obtain the following observation.

Observation 4.2. A suitable t is nearly-suitable if and only if none of 2td1, 2td2, 2td3 is
an integer.

If one of d1, d2, d3 is irrational, then any suitable t is also nearly-suitable, thus such
(d1, d2, d3) is not nearly-Ramsey. Otherwise, we write di = pi

qi
such that pi, qi are integers

and gcd(pi, qi) = 1 for i = 1, 2, 3. To prove Conjecture 4.1, it is thus sufficient to find a
suitable t in T := {t : q1, q2, q3 - 2t}. We can prove that there is such t if q1, q2, q3 are all
odd, as well as in several other cases, but here we omit these proofs.

5 (k, 2)-powers in uniform colourings
We conjecture that for every t, the uniform colouring of ct from Lemma 1.3 contains a
monochromatic copy of the (k, 2)-power for every k. We have seen in the proof of Lemma
1.3 that in this case the sides of a red copy ‘jump’ over the t blue intervals. However, this
is only a necessary condition, and not a sufficient one. Indeed, if a jump starts from a ‘bad’
part of a red interval, it might end up inside a blue one. More precisely, we can consider
the problem as follows.

Let N = 2t(2k− 1) and colour vertices of a regular N -gon such that t reds are followed
by t blues in an alternating manner, so that vertices 0, . . . , 2k − 1 are red, 2k, . . . , 2 · 2k − 1
are blue, 2·2k, . . . , 3·2k−1 are red etc. If there is a monochromatic copy of the (k, 2)-power,
there is also a red copy. For each vertex of the red copy of the (k, 2)-power, consider its
index modulo 2k+1−2. Each of these needs to be at most 2k−1. Moreover, the differences
among the consecutive vertices need to be 2t (mod 2k+1 − 2), 4t (mod 2k+1 − 2), . . . , 2kt
(mod 2k+1 − 2), in some order. To have such a k-tuple of indices modulo 2k+1 − 2 is a
necessary and sufficient condition for the existence of a red copy.

By computer, we verified this up to a large k. We phrase a problem in a more natural
and general form. Interpret the numbers 2it (mod 2k+1 − 2) that are larger than 2k − 1
as 2k+1 − 2 − 2it, and denote these k numbers by v1, . . . , vk. With this, the numbers vi
will determine how one vertex moves compared to the preceding vertex in the 0, . . . , 2k− 1
interval. Note that none of these numbers can be equal to 2k − 1. Thus, −2k + 1 <
v1, . . . , vk < 2k − 1, and

∑k
i=1 vk = 0, since the k-gon with these side-distances exists.
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We get the following even nicer question if we divide by 2k − 1.

Conjecture 5.1. If a sequence of reals −1 < x1, . . . , xk < 1 satisfies

xi+1 =


2xi, if 2|xi| < 1

2xi − 2, if 2xi > 1

2− 2xi, if 2xi < −1

for i = 1, . . . , k, such that xk+1 = x1, then there is a permutation π of {1, . . . , k} such that
0 ≤

∑j
i=1 xπ(i) < 1 for every j.

This conjecture is similar to Steinitz’s theorem [12], and to other vector balancing
problems. Indeed, it can be proved for any xi’s satisfying the conditions of the conjecture,∑k

i=1 xi = 0. We note that if the xi’s are any sequence satisfying
∑k

i=1 xi = 0 and |xi| < 1/2

for every i, then one can easily find a permutation for which 0 ≤
∑j

i=1 xπ(i) < 1 for every
j. But without this bound, we have to exploit that xi+1 = 2xi, as otherwise there would
be counterexamples, i.e., 0.6, 0.6, 0.6,−0.9,−0.9. Could it be that the conjecture is true
because we always have many i’s such that |xi| < 1/2, and these can be used somehow to
take care of the other xi’s?
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