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Abstract

Let ¥ = {a1,...,a,} be a set of positive integers with a; < --- < a, such that all
2" subset sums are distinct. A famous conjecture by Erdds states that a, > ¢- 2" for
some constant ¢, while the best result known to date is of the form a,, > ¢-2"/y/n.

In this paper, we propose a generalization of the Erdgs distinct sum problem that
is in the same spirit as those of the Davenport and the Erd&s-Ginzburg-Ziv constants
recently introduced in [7] and in [6]. More precisely, we require that the non-zero
evaluations of the m-th degree symmetric polynomial are all distinct over the sub-
sequences of ¥. Even though these evaluations can not be seen as the values assumed
by the sum of independent random variables, surprisingly, the variance method works
to provide a nontrivial lower bound on a,,. Indeed, the main result here presented is
to show that

ap > Cm 2%/7117%.
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1 Introduction

For any n > 1, consider sets {ay,...,a,} of positive integers with a; < --- < a, whose
subset sums are all distinct. A famous conjecture, due to Paul Erdés, is that a, > ¢ - 2"
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for some constant ¢ > 0. Using the variance method, Erdés and Moser [10] (see also [1]
and [13]) were able to prove that a, > 1/4-n~2.2" No advances have been made
so far in removing the term n~'/2 from this lower bound, but there have been several
improvements on the constant factor, including the work of Dubroff, Fox, and Xu [11],
Guy [12], Elkies [9], Bae [4], and Aliev [3]. In particular, the best currently known lower

bound states that a,, > (1+ 0(1))\/2 \/Lﬁgn. Two simple proofs of this result, first obtained

unpublished by Elkies and Gleason, are presented in [11]. In the other direction, the
best-known construction is due to Bohman [5] (see also [14]), who showed that there exist
arbitrarily large such sets with a,, < 0.22002 - 2™.

Several variations on the problem appear during the years such as [2] and [§]. In
this paper, we generalize the Erdds distinct sum problem by requiring that the non-zero
evaluations of the m-th degree symmetric polynomial are all distinct over the sub-sequences
of . The problem here considered is inspired by those of the Davenport and the Erd&s-
Ginzburg-Ziv constants recently introduced in [7] and in [6].

More formally, given a sequence of real numbers ¥ = {as,...,a,} and a subset A C

1,n], we define the m-th (degree) evaluatio e¥(A) = i YCA G @ , where we
g > { }a ) 77L}_ 1 m
11 <<t

adopt the convention that ef}(A) = 0 if |A] < m.

Problem 1.1. For every positive integer n, find the least positive M = M (n) such that
there exists an increasing sequence ¥ = (ay,...,a,) of real numbers with a; € [0, M| for
every i such that for all distinct Ay, As C [1,n] of size at least m we have that |e¥(A;) —
ew(As) 2 1.

A sequence as in Problem 1.1 will be called M -bounded m-th evaluation distinct.
In Section 2, we provide lower bounds on the values of M in Problem 1.1 using the
variance method proving that )

M > ¢y, - 2m [nt"2m,

Then, in Section 3, we derive an upper bound presenting a direct construction.

2 Lower Bounds

One first lower bound to the value of M of Problem 1.1 can be provided using the pigeonhole
principle. Indeed, since the number of non-zero evaluations of ey} is 2" — Z;;l (7;) =
(1+0(1))2™, these evaluations are spaced at least by one, and each of these is smaller than
e ([1,n]) < (M)M™ < n™M™ /ey, it follows that M > ¢, - 2m /n.

Now we see that using the variance method (see [1], [10] or [12]), it is possible to improve
this lower bound.

Theorem 2.1. Let ¥ = (ay,...,a,) be an m-th evaluation distinct sequence in R (resp.
7)) that is M-bounded. Then

2175 (m—1))m 2w

. .
3zm n'"zm

M > (1+0(1))
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Proof. Let ¥ = (ay,...,a,) be such a sequence of real (resp. integer) numbers. Pick a
subset A uniformly at random from 2!'™ and define the real random variable X = e(A).
We denote by p := E[X] and 6% := E[X?] — 1i? respectively the expected value and the vari-
ance of the random variable X. Clearly, n=1/2"3>",, 1. |4/5m €% (A). Here we have that
the monomial a;, ...a;, appears in the evaluation ef?(A) whenever A contains iy,. ..,y
which happens for 2"~ subsets of [1,n]. Therefore, we have that u = e%([1,n])/2™. By
definition of variance we have that:

2

D I e D B D D

AC[1,n] AC[1,n] \ 1<io<-<im 11 <dg <+ <im
Zl,---y%neA i1,~-~,im€[l,n}

Due to the symmetry of e}, there exist coefficients C, ..., C,, such that the latter sum
can be written as follows:

CO Z gy oo Qg + 01 Z Z Qi Qg - - CL?Z c aimel—i— (1)

i1 <ig<...<igm 11<i2<...<i2m—1 £€[1,2m—1]
Zl,...,ZQmE[l,n} i1yesi2m—1€[1,n]
2 2
+...+Cy E a ...a; .
11<12<...<Iim

il,...,ime[l,n]

One can prove that Cy = 0, C; = 22" (*™~2) and Cy, = O(2") for every k € {2,...,m}.
This can be seen since the coefficient of a;, ... a,,,  is (2;”) times that obtained by taking
the term a;, ...a;, from the first (e¥/(A) — p) in the product and a;,,, ...a;,, from the

second one. Then, the coefficient of a, ... as, ... s, _, is (2;”:12) times that obtained taking

the term a;, ... a;, from the first (ef?(A) — i) in the product and a; a;,, ., ... as,,, , from

the second one. Symmetrically, the same is true for every term a;, ...aZ ...a;,, ,. Finally,

.ag, .
the coefficient of a? ...a7 a;,,, ... @, , is (2z:ik) times that obtained taking the term
a;, ...a;, from the first (e§/(A) — p) in the product and a;, ...a;.a;,, ., ..., , from the

second one. Summing up, we can rewrite equation (1) as

2n0_2 — Cl Z Z a’ila’iQ e (I?g . aizm_l—l- (2)

11<12<...<%2m—1 fe[l,mel]
1150 i2m—1€[1,n]

m
n 2 2
+0(2") E C E E Wiy Qig - -+ Oy - Qg - Cig,
k=2

11<i2<...<l2m_k 1< <Ly,
i1y yt2m—k E[1,m] L1, 0K E[1,2m—k]

2m

2m—k

) < m terms. Since

2m—k

In equation (2), each Cj multiplies a sum of (, " ) - (*"%
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a, is the largest element of the sequence, we get:

2m—1

21? < h (2;?__12) 2n=2ma2m(1 4 (1)) = (%2“ 2m 2m) (1+o(1)).
(3)

On the other hand, for |A| > m, the evaluations e¥(A) are all different and spaced
at least by one, and hence we have that (e} (A) — p)? assumes at least 1(2" — St ™)
different values. Since the sum ), (€% (A) — @)? is minimized when the values are
around p and are spaced by one, we obtain the lower bound:

2" =2 i? < 2" (4)

To conclude the proof, it is enough to compare (3) and (4). O

3 Upper bounds
In this section we provide an upper bound to the value of M in Problem 1.1 by presenting
the following direct construction.

Lemma 3.1. Let €1, €5 be two reals such that e > €5 > 0 and let m > 2 be an integer. Then
for every n large enough the sequence ¥ = (ay, as, . .., ay), where a; = (2+¢)"— (2+¢) !
fori=1,2,... n, is m-evaluation distinct.

Proof. Suppose by contradiction there exists two distinct subsets B, C' C [1,n] such that
e} (B) — e (C)] < 1. (5)

For an arbitrary subset S C [1,n] with |S| > m, by definition we have:

egL(S) _ Z( 1) (2 +e ) (lS‘ _.7) Z (2 + 62)i1+i2+...+ij_j_ (6)

, m-—=7 o=
]:0 {11712 ..... zj}QS
11 <12<...<i;

We first show that inequality (5) implies |B| = |C|. Suppose without loss of generality
that |B| > |C|. Then (6) implies that:

) - () = ey | (B - (1] +§m; (24 )

|B| _] 11+i2+... 41 —] |C| _j i1+i2+...+ij—J
(D7) % w970 57 g

{’i‘lﬂ'? ~~~~~ ij}gB {121,2'2 ..... ij}gc
Z1<’L2<...<Zj z1<’52<...<1j

(7)
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Now it can be seen that each term in the first summation of equation (7) is of order

Jn
O (nm(2 +e)m (gi—:) >, for j = 1,2,...,m and n — oo. Hence, asymptotically in n,

we can rewrite (7) as el (B) —e%(C) = (2+€,)™ [(@) — (E')] (I+0(1)), since €; > €. This
clearly contradicts (5), and hence we must have |B| = |C|.

Next, let t be an integer such that |B| = |C| = t and let B = {by,bs,...,b;} and
C={c1,co,...,c1}, where by < by < ...<band ¢; < ¢y < ... < ¢. Since B # C, there
exists an integer ¢ € [1,¢] such that b, # ¢, while by 1 = cpy1, bora = Copo,. .., by = ¢
Suppose without loss of generality that b, > ¢,. Then we have:

e (B) — e (C)] =

(2er) " (;__11> (Z(Z +e) -2+ 62)01"1) (-1

i<l

. t ] . . . y . . . y
(2 61)(m—])n (m ]]) § : (2 62)b11+b12+...+sz j (2 62)67’1+C7‘2+”'+C7‘j 7 ‘
1<i1<12<...<1,; <t
1<i21<<€ =

(8)
To conclude the proof, we need to lower bound equation (8). The summation formula for

the geometric series implies that: Y5, (2 +e) " < 37 i (2+ €)™ < (24 €)*/(1 +

€2) < (2+ €)1 /(1 + €2), and since each term in the summation over j in equation (8) is,
(=Dn

as n — oo, of order O <nm(2 + €)M In(2 4 )0t (gi—:) ), we obtain the following

lower bound:

e (B) — e (O)] >

(24 ) m=bn ( =1 ) (24 eg)be ! (1 -

m—1

1 1)).
o) e

The theorem now follows since the right hand side of the above inequality is greater than 1
for sufficiently large n’s. [

Along the same lines of Lemma 3.1, we can prove the following corollary. We do not
report here the proof due to space limitations.

Corollary 3.2. Let €1, €5 be two reals such that e, > e > 0 and let m > 2 be an
integer. Then for every m large enough the sequence ¥ = (aq,as,...,a,), where a; =
|2+ 6)"— 2+ )™ fori=1,2,...,n, is m-evaluation distinct.

We observe that Corollary 3.2 holds also for m = 1 but we obtain a bound that is worse
than the ones given in [5] and [14]. As an easy consequence of Corollary 3.2, one can prove
the following theorem.

Theorem 3.3. There exists a sequence ¥ = (ai,az,...,a,) of n integers that is m-
evaluation distinct and M -bounded such that M < 2”*0("), for n — oo.
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